Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hepatology ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537134

RESUMEN

BACKGROUND AND AIMS: HBV infection is a major etiology of acute-on-chronic liver failure (ACLF). At present, the pattern and regulation of hepatocyte death during HBV-ACLF progression are still undefined. Evaluating the mode of cell death and its inducers will provide new insights for developing therapeutic strategies targeting cell death. In this study, we aimed to elucidate whether and how immune landscapes trigger hepatocyte death and lead to the progression of HBV-related ACLF. APPROACH AND RESULTS: We identified that pyroptosis represented the main cell death pattern in the liver of patients with HBV-related ACLF. Deficiency of MHC-I in HBV-reactivated hepatocytes activated cytotoxic NK cells, which in turn operated in a perforin/granzyme-dependent manner to trigger GSDMD/caspase-8-dependent pyroptosis of hepatocytes. Neutrophils selectively accumulated in the pyroptotic liver, and HMGB1 derived from the pyroptotic liver constituted an important factor triggering the generation of pathogenic extracellular traps in neutrophils (NETs). Clinically, elevated plasma levels of myeloperoxidase-DNA complexes were a promising prognostic biomarker for HBV-related ACLF. More importantly, targeting GSDMD pyroptosis-HMGB1 release in the liver abrogates NETs that intercept the development of HBV-related ACLF. CONCLUSIONS: Studying the mechanisms that selectively modulate GSDMD-dependent pyroptosis, as well as its immune landscapes, will provide a novel strategy for restoring the liver function of patients with HBV-related ACLF.

2.
World J Clin Cases ; 9(20): 5621-5630, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34307617

RESUMEN

BACKGROUND: Mycobacterium mucogenicum (M. mucogenicum) belongs to the group of rapidly growing Nontuberculous mycobacteria. This microorganism is associated with a wide spectrum of infectious diseases. Due to a low detection rate or the time required for conventional culture methodology, a rapid and broad-spectrum method is necessary to identify rare pathogens. CASE SUMMARY: A 12-year-old immunocompetent girl presented with painful masses for five months. The first mass was found in the right upper quadrant of the abdomen, and was about 1 cm × 1.5 cm in size, tough but pliable in texture, with an irregular margin and tenderness. An abscess gradually formed and ulcerated with suppuration of the mass. Three new masses appeared on the back one by one. Chest computed tomography showed patchy and streaky cloudy opacities in both lungs. Needle aspiration of the abscess was performed, but the smear and conventional culture were negative, and the pathological examination showed no pathogens. We then performed next-generation sequencing using a formalin-fixed, paraffin-embedded specimen to identify the pathogen. A significantly high abundance of M. mucogenicum was detected. The patient's abscesses gradually decreased in size, while inflammation in both lungs improved following 12-wk of treatment. No recurrence was observed four months after the end of the one-year treatment period. CONCLUSION: Next-generation sequencing is a promising tool for the rapid and accurate diagnosis of rare pathogens, even when using a formalin-fixed, paraffin-embedded specimen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA