Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Anal Bioanal Chem ; 407(15): 4363-71, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25450054

RESUMEN

A rapid liquid chromatography tandem mass spectrometry method has been developed and validated for the determination of α-trenbolone, ß-trenbolone, α-nortestosterone, ß-nortestosterone, zeranol, and taleranol in bovine liver. The impact of liquid-liquid extraction with methyl tert-butyl ether and optimized solid phase extraction on silica cartridges significantly reduced effort and time of sample preparation. Electrospray ionization gives a significant signal increase compared with atmospheric pressure chemical ionization and atmospheric pressure photoionization. The HPLC gradient was optimized to separate isobaric analytes and matrix constituents from the hormone molecules. The optimized time and temperature of enzymatic hydrolysis of conjugated trenbolone was 4 h at 52 °C. The method validated in the range of 0.5-30 µg kg(-1) for α-trenbolone, ß-trenbolone, zeranol, taleranol, and 2-30 µg kg(-1) for α-nortestosterone, ß-nortestosterone. Combined uncertainty of measurements was in the range of 4%-23%. The matrix effect was negligible (1%-5%) for all analytes except of α-nortestosterone (19%). The developed method with changes concerning sample size and hydrolysis was also applied for the analysis of meat, serum, and urine samples. Graphical Abstract Determination of trenbolone, nortestosterone and zeranol in bovine liver.


Asunto(s)
Anabolizantes/análisis , Estrógenos no Esteroides/análisis , Hígado/química , Nandrolona/análisis , Acetato de Trembolona/análisis , Zeranol/análisis , Animales , Bovinos , Cromatografía Líquida de Alta Presión/métodos , Límite de Detección , Extracción Líquido-Líquido/métodos , Éteres Metílicos , Espectrometría de Masas en Tándem/métodos , Zearalenona/análisis
2.
Polymers (Basel) ; 16(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38611149

RESUMEN

In this study, we compared the conversion of polyethylene terephthalate (PET) into porous carbons for water purification using pyrolysis and post-activation with KOH. Pyrolysis was conducted at 400-850 °C, followed by KOH activation at 850 °C for samples pyrolyzed at 400, 650, and 850 °C. Both pyrolyzed and post-activated carbons showed high specific surface areas, up to 504.2 and 617.7 m2 g-1, respectively. As the pyrolysis temperature increases, the crystallite size of the graphite phase rises simultaneously with a decrease in specific surface area. This phenomenon significantly influences the final specific surface area values of the activated samples. Despite their relatively high specific surface areas, pyrolyzed PET-derived carbons prove unsuitable as adsorbents for purifying aqueous media from methylene blue dye. A sample pyrolyzed at 650 °C, with a surface area of 504.2 m2 g-1, exhibited a maximum adsorption value of only 20.4 mg g-1. We propose that the pyrolyzed samples have a surface coating of amorphous carbon poor in oxygen groups, impeding the diffusion of dye molecules. Conversely, post-activated samples emerge as promising adsorbents, exhibiting a maximum adsorption capacity of up to 127.7 mg g-1. This suggests their potential for efficient dye removal in water purification applications.

3.
Vet World ; 16(7): 1451-1460, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621551

RESUMEN

Background and Aim: The main purpose of a national bioresource center is to standardize, centralize, preserve, and ensure accessibility of microbial bioresources that accumulate there because of state research programs. The establishment of national bioresource centers for antibiotic-resistant microorganisms allows to solve practical problems in the field of veterinary service, as well as to develop effective chemotherapeutic and disinfectant drugs to overcome the mechanisms of resistance. This study aimed to outline the process of forming a national culture collection of antibiotic-resistant strains of zoonotic bacteria in the Russian Federation using two microbial strains. Materials and Methods: The object of research was isolates of Salmonella spp., Escherichia coli, Enterococcus spp., Campylobacter spp., Listeria monocytogenes, and Staphylococcus spp., all of which were obtained from biomaterials of farm animals, feed samples, bedding, water from livestock buildings, washouts from environmental objects, and food products. The resistance of bacterial isolates was determined using microbiological and molecular-genetic research methods. Results: During monitoring studies, 1489 bacterial isolates were isolated. In total, 408 bacterial isolates were tested for sensitivity to antimicrobial agents, including E. coli (47.6%), Salmonella spp. (30.4%), Enterococcus spp. (11.3%), and Campylobacter spp. (10.8%). For genetic characterization, 95 isolates of Salmonella enterica, E. coli, Campylobacter spp., L. monocytogenes, Staphylococcus spp., Enterococcus spp. were chosen from the research collection, which was formed as part of the monitoring program for antibiotic resistance. Conclusion: Deposited isolates that underwent whole-genome analysis can be used as positive control samples both in the development and use of methods or test systems for the detection of various resistance genes in zoonotic bacteria. In addition, such isolates can also be used for microbiological studies related to determining the sensitivity of microorganisms to antibacterial drugs, for phenotypic studies in the diagnosis of various bacterial infections in animals and birds, and retrospective analysis of strains from numerous collections.

4.
Front Vet Sci ; 10: 1154520, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415963

RESUMEN

Over the past 10 years, immunization of cattle in Russia has been performed using vaccines from Brucella abortus strains 82, 19 and 75/79. To prevent brucellosis in small ruminants, two vaccines have been used, from the Brucella melitensis strain REV-1 and the B. abortus strain 19; note that twice as many animals have been immunized with the former vaccine than with the latter vaccine. The disadvantage of using these preparations is the formation of prolonged post-vaccination seropositivity, which is especially pronounced in animals after immunization with vaccines from B. abortus strain 19 and B. melitensis strain REV-1. This study aims to perform the whole genome sequencing of Brucella vaccine strains from the Russian collection. A bioinformatics analysis of the genomic data proved that the vaccine strains 75/79AB, 82, R-1096, and the KV 17/100 belong to ST-2, 104 M to ST-1, KV 13/100 to ST-5. This analysis allowed us to characterize vaccine strains's phylogenetic relationships and to prove the close relation of vaccine strains 75/79AB, 82, R-1096. Also, we defined candidate mutations in genes pmm, wbdA, wbkA, wboA, and eryB, which could be responsible for the attenuated virulence of vaccine strains. The complete genomic sequences of B. abortus strains make further studies of bacterial pathogenicity determinants and virulence phenotype feasible, as well as their use in quality control of animal medicines.

5.
Antibiotics (Basel) ; 12(3)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36978338

RESUMEN

LF3872 was isolated from the milk of a healthy lactating and breastfeeding woman. Earlier, the genome of LF3872 was sequenced, and a gene encoding unique bacteriocin was discovered. We have shown here that the LF3872 strain produces a novel thermolabile class III bacteriolysin (BLF3872), exhibiting antimicrobial activity against antibiotic-resistant Staphylococcus aureus strains. Sequence analysis revealed the two-domain structural (lysozyme-like domain and peptidase M23 domain) organization of BLF3872. At least 25% residues of this protein are expected to be intrinsically disordered. Furthermore, BLF3872 is predicted to have a very high liquid-liquid phase separation. According to the electron microscopy data, the bacterial cells of LF3872 strain form co-aggregates with the S. aureus 8325-4 bacterial cells. LF3872 produced bacteriolysin BLF3872 that lyses the cells of the S. aureus 8325-4 mastitis-inducing strain. The sensitivity of the antibiotic-resistant S. aureus collection strains and freshly isolated antibiotic-resistant strains was tested using samples from women with lactation mastitis; the human nasopharynx and oral cavity; the oropharynx of pigs; and the cows with a diagnosis of clinical mastitis sensitive to the lytic action of the LF3872 strain producing BLF3872. The co-cultivation of LF3872 strain with various antibiotic-resistant S. aureus strains for 24 h reduced the level of living cells of these pathogens by six log. The LF3872 strain was found to be able to co-aggregate with all studied S. aureus strains. The cell-free culture supernatant of LF3872 (CSLF3872) induced S. aureus cell damage and ATP leakage. The effectiveness of the bacteriolytic action of LF3872 strain did not depend on the origin of the S. aureus strains. The results reported here are important for the creation of new effective drugs against antibiotic-resistant strains of S. aureus circulating in humans and animals.

6.
Antibiotics (Basel) ; 12(10)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37887236

RESUMEN

The Ligilactobacillus salivarius 7247 (LS7247) strain, originally isolated from a healthy woman's intestines and reproductive system, has been studied for its probiotic potential, particularly against Salmonella Enteritidis (SE) and Salmonella Typhimurium (ST) as well as its potential use in synbiotics. LS7247 showed high tolerance to gastric and intestinal stress and effectively adhered to human and animal enterocyte monolayers, essential for realizing its probiotic properties. LS7247 showed high anti-Salmonella activity. Additionally, the cell-free culture supernatant (CFS) of LS7247 exhibited anti-Salmonella activity, with a partial reduction upon neutralization with NaOH (p < 0.05), suggesting the presence of anti-Salmonella factors such as lactic acid (LA) and bacteriocins. LS7247 produced a high concentration of LA, reaching 124.0 ± 2.5 mM after 48 h of cultivation. Unique gene clusters in the genome of LS7247 contribute to the production of Enterolysin A and metalloendopeptidase. Notably, LS7247 carries a plasmid with a gene cluster identical to human intestinal strain L. salivarius UCC118, responsible for class IIb bacteriocin synthesis, and a gene cluster identical to porcine strain L. salivarius P1ACE3, responsible for nisin S synthesis. Co-cultivation of LS7247 with SE and ST pathogens reduced their viability by 1.0-1.5 log, attributed to cell wall damage and ATP leakage caused by the CFS. For the first time, the CFS of LS7247 has been shown to inhibit adhesion of SE and ST to human and animal enterocytes (p < 0.01). The combination of Actigen prebiotic and the CFS of LS7247 demonstrated a significant combined effect in inhibiting the adhesion of SE and ST to human and animal enterocytes (p < 0.001). These findings highlight the potential of using the LS7247 as a preventive strategy and employing probiotics and synbiotics to combat the prevalence of salmonellosis in animals and humans caused by multidrug resistant (MDR) strains of SE and ST pathogens.

7.
Biomolecules ; 13(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38136611

RESUMEN

Previously, the protective role of the S-layer protein 2 (Slp2) of the vaginal Lactobacillus crispatus 2029 (LC2029) strain against foodborne pathogens Campylobacter jejuni, Salmonella enterica serovar Enteritidis, and Escherichia coli O157:H was demonstrated. We demonstrate the new roles of the Slp2-positive LC2029 strain and soluble Slp2 against C. albicans infections. We show that LC2029 bacteria can adhere to the surface of the cervical epithelial HeLa cells, prevent their contact with C. albicans, and block yeast transition to a pathogenic hyphal form. Surface-bound Slp2 provides the ability for LC2029 to co-aggregate with various C. albicans strains, including clinical isolates. C. albicans-induced necrotizing epithelial damage is reduced by colonization with the Slp2-positive LC2029 strain. Slp2 inhibits the adhesion of various strains of C. albicans to different human epithelial cells, blocks yeast transition to a pathogenic hyphal form, and prevents the colonization and pathogenic infiltration of mucosal barriers. Only Slp2 and LC2029 bacteria stimulate the production of protective human ß-defensin 3 in various epithelial cells. These findings support the anti-Candida albicans potential of the probiotic LC2029 strain and Slp2 and form the basis for further research on their ability to prevent and manage invasive Candida infections.


Asunto(s)
Candidiasis , Lactobacillus crispatus , Femenino , Humanos , Candida albicans , Células HeLa , Células Epiteliales/metabolismo
8.
Antibiotics (Basel) ; 13(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38247590

RESUMEN

Limosilactobacillus fermentum strain 3872 (LF3872) was originally isolated from the breast milk of a healthy woman during lactation and the breastfeeding of a child. Ligilactobacillus salivarius strain 7247 (LS7247) was isolated at the same time from the intestines and reproductive system of a healthy woman. The genomes of these strains contain genes responsible for the production of peptidoglycan-degrading enzymes and factors that increase the permeability of the outer membrane of Gram-negative pathogens. In this work, the anti-Salmonella and intestinal homeostatic features of the LF3872 and LS7247 consortium were studied. A multi-drug resistant (MDR) strain of Salmonella enteritidis (SE) was used in the experiments. The consortium effectively inhibited the adhesion of SE to intact and activated human, porcine, and chicken enterocytes and reduced invasion. The consortium had a bactericidal effect on SE in 6 h of co-culturing. A gene expression analysis of SE showed that the cell-free supernatant (CFS) of the consortium inhibited the expression of virulence genes critical for the colonization of human and animal enterocytes. The CFS stimulated the production of an intestinal homeostatic factor-intestinal alkaline phosphatase (IAP)-in Caco-2 and HT-29 enterocytes. The consortium decreased the production of pro-inflammatory cytokines IL-8, TNF-α, and IL-1ß, and TLR4 mRNA expression in human and animal enterocytes. It stimulated the expression of TLR9 in human and porcine enterocytes and stimulated the expression of TLR21 in chicken enterocytes. The consortium also protected the intestinal barrier functions through the increase of transepithelial electrical resistance (TEER) and the inhibition of paracellular permeability in the monolayers of human and animal enterocytes. The results obtained suggest that a LF3872 and LS7247 consortium can be used as an innovative feed additive to reduce the spread of MDR SE among the population and farm animals.

9.
Antibiotics (Basel) ; 11(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36290095

RESUMEN

Limosilactobacillus fermentum strain 3872 (LF3872) was originally isolated from the breast milk of a healthy woman during lactation and the breastfeeding of a child. The high-quality genome sequencing of LF3872 was performed, and a gene encoding a unique bacteriocin was discovered. It was established that the bacteriocin produced by LF3872 (BLF3872) belongs to the family of cell-wall-degrading proteins that cause cell lysis. The antibacterial properties of LF3872 were studied using test cultures of antibiotic-resistant Gram-positive and Gram-negative pathogens. Gram-positive pathogens (Staphylococcus aureus strain 8325-4 and S. aureus strain IIE CI-SA 1246) were highly sensitive to the bacteriolytic action of LF3872. Gram-negative pathogens (Escherichia coli, Salmonella strains, and Campylobacter jejuni strains) were more resistant to the bacteriolytic action of LF3872 compared to Gram-positive pathogens. LF3872 is a strong co-aggregator of Gram-negative pathogens. The cell-free culture supernatant of LF3872 (CSLF3872) induced cell damage in the Gram-positive and Gram-negative test cultures and ATP leakage. In the in vitro experiments, it was found that LF3872 and Actigen prebiotic (Alltech Inc., Nicholasville, KY, USA) exhibited synergistic anti-adhesive activity against Gram-negative pathogens. LF3872 has immunoregulatory properties: it inhibited the lipopolysaccharide-induced production of proinflammatory cytokines IL-8, IL-1ß, and TNF-α in a monolayer of Caco-2 cells; inhibited the production of IL-12 and stimulated the production of IL-10 in immature human dendritic cells; and stimulated the production of TGF-ß, IFN-γ, and IgA in the immunocompetent cells of intestinal Peyer's patches (PPs) in mice. These results indicate the possibility of creating a synbiotic based on LF3872 and a prebiotic derived from Saccharomyces cerevisiae cell wall components. Such innovative drugs and biologically active additives are necessary for the implementation of a strategy to reduce the spread of antibiotic-resistant strains of socially significant animal and human infections.

10.
Chem Biol Interact ; 334: 109339, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33316227

RESUMEN

Clinical trials of thermoheliox application (inhalation with a high-temperature mixture of oxygen and helium, 90 °C) in the treatment of the acute phase of coronavirus infection were conducted. Dynamics of disease development in infected patients (PCR test for the virus) and, dynamics of changes in blood concentration of C-reactive protein, immunoglobulin M, specific immunoglobulin G were studied. High efficiency of thermoheliox in releasing the organism from the virus and stimulating the immune response (thermovaccination effect) was shown. The kinetic model of the process is proposed and analyzed.


Asunto(s)
COVID-19/inmunología , COVID-19/terapia , Helio/administración & dosificación , Hipertermia Inducida/métodos , Oxígeno/administración & dosificación , Administración por Inhalación , Adulto , Anciano , Anticuerpos Antivirales/sangre , Proteína C-Reactiva/biosíntesis , COVID-19/virología , Calor , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Cinética , Persona de Mediana Edad , Modelos Inmunológicos , SARS-CoV-2/inmunología , Vacunación/métodos
11.
J Food Prot ; 73(8): 1566-90, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20819373

RESUMEN

Concerns about foodborne salmonellosis have led many countries to introduce microbiological criteria for certain food products. If such criteria are not well-grounded in science, they could be an unjustified obstacle to trade. Raw poultry products are an important part of the global food market. Import and export ambiguities and regulatory confusion resulting from different Salmonella requirements were the impetus for convening an international group of scientific experts from 16 countries to discuss the scientific and technical issues that affect the setting of a microbiological criterion for Salmonella contamination of raw chicken. A particular concern for the group was the use of criteria implying a zero tolerance for Salmonella and suggesting complete absence of the pathogen. The notion can be interpreted differently by various stakeholders and was considered inappropriate because there is neither an effective means of eliminating Salmonella from raw poultry nor any practical method for verifying its absence. Therefore, it may be more useful at present to set food safety metrics that involve reductions in hazard levels. Such terms as "zero tolerance" or "absence of a microbe" in relation to raw poultry should be avoided unless defined and explained by international agreement. Risk assessment provides a more meaningful approach than a zero tolerance philosophy, and new metrics, such as performance objectives that are linked to human health outcomes, should be utilized throughout the food chain to help define risk and identify ways to reduce adverse effects on public health.


Asunto(s)
Seguridad de Productos para el Consumidor , Aves de Corral/microbiología , Salud Pública , Intoxicación Alimentaria por Salmonella/prevención & control , Salmonella/crecimiento & desarrollo , Animales , Recuento de Colonia Microbiana , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Microbiología de Alimentos , Humanos , Medición de Riesgo , Factores de Riesgo , Salmonella/aislamiento & purificación
12.
Chem Biol Interact ; 329: 109209, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32750325

RESUMEN

Kinetic modeling of the behavior of complex chemical and biochemical systems is an effective approach to study of the mechanisms of the process. A kinetic model of coronaviral infection development with a description of the dynamic behavior of the main variables, including the concentration of viral particles, affected cells, and pathogenic microflora, is proposed. Changes in the concentration of hydrogen ions in the lungs and the pH -dependence of carbonic anhydrase activity (a key breathing enzyme) are critical. A significant result is the demonstration of an acute bifurcation transition that determines life or system collapse. This transition is connected with exponential growth of concentrations of the process participants and with functioning of the key enzyme carbonic anhydrase in development of toxic effects. Physical and chemical interpretations of the therapeutic effects of the body temperature rise and the potential therapeutic effect of "thermoheliox" (respiration with a thermolized mixture of helium and oxygen) are given. The phenomenon of "thermovaccination" is predicted, which involves stimulation of the immune response by "thermoheliox".


Asunto(s)
Infecciones por Coronaviridae/metabolismo , Helio/química , Oxígeno/química , Inmunidad Adaptativa , Temperatura Corporal , Anhidrasas Carbónicas/metabolismo , Infecciones por Coronaviridae/patología , Infecciones por Coronaviridae/terapia , Helio/uso terapéutico , Humanos , Concentración de Iones de Hidrógeno , Cinética , Pulmón/metabolismo , Modelos Teóricos , Oxígeno/uso terapéutico
13.
Cancer Lett ; 449: 207-214, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30796968

RESUMEN

Clinical, biochemical and molecular biology studies have identified lysosome-encapsulated cellular proteases as critical risk factors for cancer progression. Cathepsins represent a group of such proteases aimed at maintenance of cellular homeostasis. Nevertheless, recent reports suggest that Cathepsin B executes other cellular programs such as controlling tumor growth, migration, invasion, angiogenesis, and metastases development. In fact, elevated levels of Cathepsins are found under different pathological conditions including inflammation, infection, neurodegenerative disease, and cancer. Furthermore, the discovery of Cathepsin B secretion and function as an extracellular matrix protein has broadened our appreciation for the impact of Cathepsin B on cancer progression. Underneath a façade of an intracellular protease with limited therapeutic potential hides a central role of cathepsins in extracellular functions. Moreover, this role is incredibly diverse from one condition to the next - from driving caspase-dependent apoptosis to facilitating tumor neovascularization and metastasis. Here we discuss the role of Cathepsin B in the oncogenic process and perspective the use of Cathepsin B for diagnostic and therapeutic applications.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Catepsina B/metabolismo , Neoplasias/enzimología , Animales , Antineoplásicos/uso terapéutico , Apoptosis , Autofagia , Catepsina B/antagonistas & inhibidores , Catepsina B/genética , Movimiento Celular , Humanos , Invasividad Neoplásica , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Inhibidores de Proteasas/uso terapéutico , Tratamiento con ARN de Interferencia , Transducción de Señal
14.
J Food Prot ; 75(8): 1469-73, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22856571

RESUMEN

The objective of this study was to estimate the prevalence of Salmonella on raw retail chicken meat in Russia. Broiler chicken carcasses (n = 698) were collected from three regions of Russia: central (i.e., Moscow area), northwest (i.e., St. Petersburg area), and southern (i.e., Krasnodar area). In each region, samples were collected to represent various cities and districts, as well as different types of retail stores and carcass storage temperatures (i.e., chilled and frozen). All chicken samples were analyzed for the presence of Salmonella using a whole-carcass rinse method. The overall Salmonella prevalence was 31.5%. There were significant differences (P < 0.05) in Salmonella prevalence by (i) region-29.3% (n = 464) in Moscow, 38.5% (n = 192) in St. Petersburg, and 23.8% (n = 42) in Krasnodar; (ii) retail store type-28.8% (n = 236) in hypermarkets, 31.9% (n = 260) in supermarkets (part of chain stores), 44.3% (n = 61) in independent supermarkets, 42.9% (n = 28) in independent minimarkets, and 26.6% (n = 113) in wet markets; and (iii) poultry company-34.3% (n = 545) on chickens produced by integrated companies compared with 22.9% (n = 118) on chickens produced by nonintegrated companies. Strategies such as good agriculture and management practices should be enhanced to reduce Salmonella prevalence on raw poultry in Russia and therefore increase the safety of chicken products.


Asunto(s)
Pollos/microbiología , Contaminación de Alimentos/análisis , Manipulación de Alimentos/métodos , Carne/microbiología , Salmonella/aislamiento & purificación , Animales , Recuento de Colonia Microbiana , Seguridad de Productos para el Consumidor , Microbiología de Alimentos , Humanos , Prevalencia , Federación de Rusia , Salmonella/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA