Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
mBio ; 10(4)2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31289186

RESUMEN

The Escherichia coli hemolysin (HlyA) is a pore-forming exotoxin associated with severe complications of human urinary tract infections. HlyA is the prototype of the repeats-in-toxin (RTX) family, which includes LtxA from Aggregatibacter actinomycetemcomitans, a periodontal pathogen. The existence and requirement for a host cell receptor for these toxins are controversial. We performed an unbiased forward genetic selection in a mutant library of human monocytic cells, U-937, for host factors involved in HlyA cytotoxicity. The top candidate was the ß2 integrin ß subunit. Δß2 cell lines are approximately 100-fold more resistant than wild-type U-937 cells to HlyA, but remain sensitive to HlyA at high concentrations. Similarly, Δß2 cells are more resistant than wild-type U-937 cells to LtxA, as Δß2 cells remain LtxA resistant even at >1,000-fold-higher concentrations of the toxin. Loss of any single ß2 integrin α subunit, or even all four α subunits together, does not confer resistance to HlyA. HlyA and LtxA bind to the ß2 subunit, but not to αL, αM, or αX in far-Western blots. Genetic complementation of Δß2 cells with either ß2 or ß2 with a cytoplasmic tail deletion restores HlyA and LtxA sensitivity, suggesting that ß2 integrin signaling is not required for cytotoxicity. Finally, ß2 mutations do not alter sensitivity to unrelated pore-forming toxins, as wild-type or Δß2 cells are equally sensitive to Staphylococcus aureus α-toxin and Proteus mirabilis HpmA. Our studies show two RTX toxins use the ß2 integrin ß subunit alone to facilitate cytotoxicity, but downstream integrin signaling is dispensable.IMPORTANCE Urinary tract infections are one of the most common bacterial infections worldwide. Uropathogenic Escherichia coli strains are responsible for more than 80% of community-acquired urinary tract infections. Although we have known for nearly a century that severe infections stemming from urinary tract infections, including kidney or bloodstream infections are associated with expression of a toxin, hemolysin, from uropathogenic Escherichia coli, how hemolysin functions to enhance virulence is unknown. Our research defines the interaction of hemolysin with the ß2 integrin, a human white cell adhesion molecule, as a potential therapeutic target during urinary tract infections. The E. coli hemolysin is the prototype for a toxin family (RTX family) produced by a wide array of human and animal pathogens. Our work extends to the identification and characterization of the receptor for an additional member of the RTX family, suggesting that this interaction may be broadly conserved throughout the RTX toxin family.


Asunto(s)
Aggregatibacter actinomycetemcomitans/química , Antígenos CD18/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Exotoxinas/química , Proteínas Hemolisinas/química , Aggregatibacter actinomycetemcomitans/genética , Toxinas Bacterianas/química , Antígenos CD18/genética , Línea Celular , Supervivencia Celular/efectos de los fármacos , Escherichia coli/genética , Prueba de Complementación Genética , Humanos , Monocitos/microbiología , Monocitos/patología , Mutación , Unión Proteica , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA