Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nature ; 578(7795): 472-476, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31905366

RESUMEN

Cohesin catalyses the folding of the genome into loops that are anchored by CTCF1. The molecular mechanism of how cohesin and CTCF structure the 3D genome has remained unclear. Here we show that a segment within the CTCF N terminus interacts with the SA2-SCC1 subunits of human cohesin. We report a crystal structure of SA2-SCC1 in complex with CTCF at a resolution of 2.7 Å, which reveals the molecular basis of the interaction. We demonstrate that this interaction is specifically required for CTCF-anchored loops and contributes to the positioning of cohesin at CTCF binding sites. A similar motif is present in a number of established and newly identified cohesin ligands, including the cohesin release factor WAPL2,3. Our data suggest that CTCF enables the formation of chromatin loops by protecting cohesin against loop release. These results provide fundamental insights into the molecular mechanism that enables the dynamic regulation of chromatin folding by cohesin and CTCF.


Asunto(s)
Factor de Unión a CCCTC/química , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Cromatina/química , Cromatina/metabolismo , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Humanos , Ligandos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Estabilidad Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Cohesinas
2.
Nature ; 562(7728): 538-544, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30323286

RESUMEN

The transcriptional co-activator p300 is a histone acetyltransferase (HAT) that is typically recruited to transcriptional enhancers and regulates gene expression by acetylating chromatin. Here we show that the activation of p300 directly depends on the activation and oligomerization status of transcription factor ligands. Using two model transcription factors, IRF3 and STAT1, we demonstrate that transcription factor dimerization enables the trans-autoacetylation of p300 in a highly conserved and intrinsically disordered autoinhibitory lysine-rich loop, resulting in p300 activation. We describe a crystal structure of p300 in which the autoinhibitory loop invades the active site of a neighbouring HAT domain, revealing a snapshot of a trans-autoacetylation reaction intermediate. Substrate access to the active site involves the rearrangement of an autoinhibitory RING domain. Our data explain how cellular signalling and the activation and dimerization of transcription factors control the activation of p300, and therefore explain why gene transcription is associated with chromatin acetylation.


Asunto(s)
Multimerización de Proteína , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción p300-CBP/química , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Dominio Catalítico , Cromatina/química , Cromatina/metabolismo , Cristalografía por Rayos X , Activación Enzimática , Humanos , Factor 3 Regulador del Interferón/química , Factor 3 Regulador del Interferón/metabolismo , Ligandos , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Dominios Proteicos , Factor de Transcripción STAT1/química , Factor de Transcripción STAT1/metabolismo , Transcripción Genética
3.
Mol Cell ; 62(2): 169-180, 2016 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-27105113

RESUMEN

Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features.


Asunto(s)
Butiratos/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Espermatocitos/metabolismo , Acetilación , Animales , Sitios de Unión , Diferenciación Celular , Ensamble y Desensamble de Cromatina , Estudio de Asociación del Genoma Completo , Histonas/química , Histonas/genética , Lisina , Masculino , Ratones , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Transcripción Genética , Activación Transcripcional
4.
Proc Natl Acad Sci U S A ; 115(4): E601-E609, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29317535

RESUMEN

Cytokine signaling through the JAK/STAT pathway controls multiple cellular responses including growth, survival, differentiation, and pathogen resistance. An expansion in the gene regulatory repertoire controlled by JAK/STAT signaling occurs through the interaction of STATs with IRF transcription factors to form ISGF3, a complex that contains STAT1, STAT2, and IRF9 and regulates expression of IFN-stimulated genes. ISGF3 function depends on selective interaction between IRF9, through its IRF-association domain (IAD), with the coiled-coil domain (CCD) of STAT2. Here, we report the crystal structures of the IRF9-IAD alone and in a complex with STAT2-CCD. Despite similarity in the overall structure among respective paralogs, the surface features of the IRF9-IAD and STAT2-CCD have diverged to enable specific interaction between these family members. We derive a model for the ISGF3 complex bound to an ISRE DNA element and demonstrate that the observed interface between STAT2 and IRF9 is required for ISGF3 function in cells.


Asunto(s)
Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Factor de Transcripción STAT2/metabolismo , Animales , Regulación de la Expresión Génica , Células HEK293 , Humanos , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Quinasas Janus/metabolismo , Ratones , Mutación Puntual , Dominios Proteicos , Factor de Transcripción STAT2/genética , Transducción de Señal
5.
EMBO J ; 35(13): 1465-82, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27225933

RESUMEN

Nap1 is a histone chaperone involved in the nuclear import of H2A-H2B and nucleosome assembly. Here, we report the crystal structure of Nap1 bound to H2A-H2B together with in vitro and in vivo functional studies that elucidate the principles underlying Nap1-mediated H2A-H2B chaperoning and nucleosome assembly. A Nap1 dimer provides an acidic binding surface and asymmetrically engages a single H2A-H2B heterodimer. Oligomerization of the Nap1-H2A-H2B complex results in burial of surfaces required for deposition of H2A-H2B into nucleosomes. Chromatin immunoprecipitation-exonuclease (ChIP-exo) analysis shows that Nap1 is required for H2A-H2B deposition across the genome. Mutants that interfere with Nap1 oligomerization exhibit severe nucleosome assembly defects showing that oligomerization is essential for the chaperone function. These findings establish the molecular basis for Nap1-mediated H2A-H2B deposition and nucleosome assembly.


Asunto(s)
Histonas/química , Histonas/metabolismo , Proteína 1 de Ensamblaje de Nucleosomas/química , Proteína 1 de Ensamblaje de Nucleosomas/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Inmunoprecipitación de Cromatina , Cristalografía por Rayos X , Análisis Mutacional de ADN , Modelos Moleculares , Proteína 1 de Ensamblaje de Nucleosomas/genética , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
Nucleic Acids Res ; 46(19): 9907-9917, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30239791

RESUMEN

Eukaryotic chromatin is a highly dynamic structure with essential roles in virtually all DNA-dependent cellular processes. Nucleosomes are a barrier to DNA access, and during DNA replication, they are disassembled ahead of the replication machinery (the replisome) and reassembled following its passage. The Histone chaperone Chromatin Assembly Factor-1 (CAF-1) interacts with the replisome and deposits H3-H4 directly onto newly synthesized DNA. Therefore, CAF-1 is important for the establishment and propagation of chromatin structure. The molecular mechanism by which CAF-1 mediates H3-H4 deposition has remained unclear. However, recent studies have revealed new insights into the architecture and stoichiometry of the trimeric CAF-1 complex and how it interacts with and deposits H3-H4 onto substrate DNA. The CAF-1 trimer binds to a single H3-H4 dimer, which induces a conformational rearrangement in CAF-1 promoting its interaction with substrate DNA. Two CAF-1•H3-H4 complexes co-associate on nucleosome-free DNA depositing (H3-H4)2 tetramers in the first step of nucleosome assembly. Here, we review the progress made in our understanding of CAF-1 structure, mechanism of action, and how CAF-1 contributes to chromatin dynamics during DNA replication.


Asunto(s)
Factor 1 de Ensamblaje de la Cromatina/fisiología , Ensamble y Desensamble de Cromatina/fisiología , Histonas/metabolismo , Nucleosomas/metabolismo , Animales , Cromatina/metabolismo , Humanos , Chaperonas Moleculares/metabolismo
7.
Nat Chem Biol ; 13(1): 21-29, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27820805

RESUMEN

Histone acetylation plays an important role in transcriptional activation. Histones are also modified by chemically diverse acylations that are frequently deposited by p300, a transcriptional coactivator that uses a number of different acyl-CoA cofactors. Here we report that while p300 is a robust acetylase, its activity gets weaker with increasing acyl-CoA chain length. Crystal structures of p300 in complex with propionyl-, crotonyl-, or butyryl-CoA show that the aliphatic portions of these cofactors are bound in the lysine substrate-binding tunnel in a conformation that is incompatible with substrate transfer. Lysine substrate binding is predicted to remodel the acyl-CoA ligands into a conformation compatible with acyl-chain transfer. This remodeling requires that the aliphatic portion of acyl-CoA be accommodated in a hydrophobic pocket in the enzymes active site. The size of the pocket and its aliphatic nature exclude long-chain and charged acyl-CoA variants, presumably explaining the cofactor preference for p300.


Asunto(s)
Coenzima A/química , Proteína p300 Asociada a E1A/química , Coenzima A/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Humanos , Ligandos , Modelos Moleculares , Conformación Proteica
8.
EMBO J ; 29(17): 2943-52, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20676058

RESUMEN

In a subset of poorly differentiated and highly aggressive carcinoma, a chromosomal translocation, t(15;19)(q13;p13), results in an in-frame fusion of the double bromodomain protein, BRD4, with a testis-specific protein of unknown function, NUT (nuclear protein in testis). In this study, we show that, after binding to acetylated chromatin through BRD4 bromodomains, the NUT moiety of the fusion protein strongly interacts with and recruits p300, stimulates its catalytic activity, initiating cycles of BRD4-NUT/p300 recruitment and creating transcriptionally inactive hyperacetylated chromatin domains. Using a patient-derived cell line, we show that p300 sequestration into the BRD4-NUT foci is the principal oncogenic mechanism leading to p53 inactivation. Knockdown of BRD4-NUT released p300 and restored p53-dependent regulatory mechanisms leading to cell differentiation and apoptosis. This study demonstrates how the off-context activity of a testis-specific factor could markedly alter vital cellular functions and significantly contribute to malignant cell transformation.


Asunto(s)
Cromatina/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Animales , Western Blotting , Células COS , Proteínas de Ciclo Celular , Línea Celular Tumoral , Chlorocebus aethiops , Humanos , Microscopía Fluorescente , Proteínas de Neoplasias , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Recombinación Genética , Factores de Transcripción/genética , Translocación Genética , Proteína p53 Supresora de Tumor/metabolismo
9.
Nat Struct Mol Biol ; 30(6): 853-859, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37081319

RESUMEN

In the early stages of mitosis, cohesin is released from chromosome arms but not from centromeres. The protection of centromeric cohesin by SGO1 maintains the sister chromatid cohesion that resists the pulling forces of microtubules until all chromosomes are attached in a bipolar manner to the mitotic spindle. Here we present the X-ray crystal structure of a segment of human SGO1 bound to a conserved surface of the cohesin complex. SGO1 binds to a composite interface formed by the SA2 and SCC1RAD21 subunits of cohesin. SGO1 shares this binding interface with CTCF, indicating that these distinct chromosomal regulators control cohesin through a universal principle. This interaction is essential for the localization of SGO1 to centromeres and protects centromeric cohesin against WAPL-mediated cohesin release. SGO1-cohesin binding is maintained until the formation of microtubule-kinetochore attachments and is required for faithful chromosome segregation and the maintenance of a stable karyotype.


Asunto(s)
Proteínas de Ciclo Celular , Centrómero , Humanos , Células HeLa , Centrómero/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cinetocoros , Mitosis , Segregación Cromosómica , Cromátides/metabolismo
10.
J Autoimmun ; 39(3): 180-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22727274

RESUMEN

Antibodies contribute to the pathogenesis of many chronic inflammatory diseases, including autoimmune disorders and allergies. They are secreted by proliferating plasmablasts, short-lived plasma cells and non-proliferating, long-lived memory plasma cells. Memory plasma cells refractory to immunosuppression are critical for the maintenance of both protective and pathogenic antibody titers. Here, we studied the response of plasma cells in spleen, bone marrow and inflamed kidneys of lupus-prone NZB/W mice to high-dose dexamethasone and/or cyclophosphamide. BrdU+, dividing plasmablasts and short-lived plasma cells in the spleen were depleted while BrdU- memory plasma cells survived. In contrast, all bone marrow plasma cells including anti-DNA secreting cells were refractory to both drugs. Unlike bone marrow and spleen, which showed a predominance of IgM-secreting plasma cells, inflamed kidneys mainly accommodated IgG-secreting plasma cells, including anti-DNA secreting cells, some of which survived the treatments. These results indicate that the bone marrow is the major site of memory plasma cells resistant to treatment with glucocorticoids and anti-proliferative drugs, and that inflamed tissues and secondary lymphoid organs can contribute to the autoreactive plasma cell memory. Therefore, new strategies targeting autoreactive plasma cell memory should be considered. This could be the key to finding a curative approach to the treatment of chronic inflammatory autoantibody-mediated diseases.


Asunto(s)
Médula Ósea/inmunología , Ciclofosfamida/uso terapéutico , Dexametasona/uso terapéutico , Inmunosupresores/uso terapéutico , Nefritis Lúpica/tratamiento farmacológico , Células Plasmáticas/inmunología , Animales , Autoanticuerpos/biosíntesis , Autoanticuerpos/inmunología , Autoinmunidad/efectos de los fármacos , Médula Ósea/efectos de los fármacos , Médula Ósea/patología , Bromodesoxiuridina/administración & dosificación , Ciclofosfamida/farmacología , ADN/inmunología , Dexametasona/farmacología , Modelos Animales de Enfermedad , Femenino , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/inmunología , Inmunoglobulina M/biosíntesis , Inmunoglobulina M/inmunología , Memoria Inmunológica/efectos de los fármacos , Inmunosupresores/farmacología , Riñón/efectos de los fármacos , Riñón/inmunología , Riñón/patología , Nefritis Lúpica/inmunología , Nefritis Lúpica/patología , Ratones , Ratones Endogámicos NZB , Especificidad de Órganos , Células Plasmáticas/efectos de los fármacos , Células Plasmáticas/patología , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/patología
11.
Nat Commun ; 13(1): 7759, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522330

RESUMEN

Histone modifications are deposited by chromatin modifying enzymes and read out by proteins that recognize the modified state. BRD4-NUT is an oncogenic fusion protein of the acetyl lysine reader BRD4 that binds to the acetylase p300 and enables formation of long-range intra- and interchromosomal interactions. We here examine how acetylation reading and writing enable formation of such interactions. We show that NUT contains an acidic transcriptional activation domain that binds to the TAZ2 domain of p300. We use NMR to investigate the structure of the complex and found that the TAZ2 domain has an autoinhibitory role for p300. NUT-TAZ2 interaction or mutations found in cancer that interfere with autoinhibition by TAZ2 allosterically activate p300. p300 activation results in a self-organizing, acetylation-dependent feed-forward reaction that enables long-range interactions by bromodomain multivalent acetyl-lysine binding. We discuss the implications for chromatin organisation, gene regulation and dysregulation in disease.


Asunto(s)
Lisina , Proteínas Nucleares , Acetilación , Proteínas Nucleares/metabolismo , Lisina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina
12.
Curr Opin Struct Biol ; 18(2): 236-42, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18206362

RESUMEN

The interferon-beta (IFN-beta) enhanceosome is a paradigm for understanding the role of transcription factor complexes in eukaryotic signal integration. Recent structural studies provide a complete atomic model of the enhanceosome at the protein-DNA interface. The composite model shows how binding of eight transcription factors to enhancer DNA creates a continuous recognition surface. The extensive overlap of individual binding sites creates a composite element that ensures that the enhancer operates as a single unit of regulation. The absence of major protein-protein interfaces between the transcription factors suggests that cooperative binding occurs through a combination of binding-induced conformational changes in DNA structure and specific interactions with coactivator proteins such as CBP/p300. Contacts with virtually every nucleotide explain why the enhancer is evolutionary conserved in mammalian genomes.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Interferón beta/genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína
13.
Structure ; 17(5): 769-77, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19446532

RESUMEN

The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a "crossover" binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.


Asunto(s)
Secuencia Rica en At , Proteínas Bacterianas/química , Proteínas Represoras/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , ADN/metabolismo , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Flagelina/química , Flagelina/genética , Flagelina/metabolismo , Secuencias Hélice-Giro-Hélice , Listeria monocytogenes/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Conformación Proteica , Proteínas Represoras/metabolismo
14.
Nat Commun ; 12(1): 4618, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326347

RESUMEN

The transcriptional co-activator and acetyltransferase p300 is required for fundamental cellular processes, including differentiation and growth. Here, we report that p300 forms phase separated condensates in the cell nucleus. The phase separation ability of p300 is regulated by autoacetylation and relies on its catalytic core components, including the histone acetyltransferase (HAT) domain, the autoinhibition loop, and bromodomain. p300 condensates sequester chromatin components, such as histone H3 tail and DNA, and are amplified through binding of p300 to the nucleosome. The catalytic HAT activity of p300 is decreased due to occlusion of the active site in the phase separated droplets, a large portion of which co-localizes with chromatin regions enriched in H3K27me3. Our findings suggest a model in which p300 condensates can act as a storage pool of the protein with reduced HAT activity, allowing p300 to be compartmentalized and concentrated at poised or repressed chromatin regions.


Asunto(s)
Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Células Cultivadas , Proteína p300 Asociada a E1A/química , Humanos , Dominios Proteicos
15.
Ann Rheum Dis ; 69(7): 1370-7, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19854711

RESUMEN

BACKGROUND: Dendritic cells (DCs) have a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). Reduced numbers of blood DCs and the accumulation of DCs at inflammatory sites have been observed in SLE. One crucial feature of DCs is their ability to migrate. OBJECTIVE: To analyse the maturation/activation state and the migratory capacity of different DC precursor subsets in SLE to further elucidate their role in autoimmunity. METHODS: Plasmacytoid DCs (pDCs), myeloid DCs (mDCs) and monocytes from patients with SLE, healthy volunteers and healthy volunteers immunised with tetanus/diphtheria were examined by flow cytometry for expression of subset-specific antigens (BDCA-2, CD11c, CD14, HLA-DR), activation/maturation markers (CD83, CD86, CD40, BLyS) and chemokine receptors (CCR1, CCR5, CCR7, ChemR23). Additionally, migratory capacity to chemokine receptors was investigated in vitro using the chemokines RANTES, CCL19 and chemerin. RESULTS: SLE monocytes and mDCs had higher CD86 and B-lymphocyte stimulatory factor (BLyS) expression levels. ChemR23 expression was lower in SLE pDCs and mDCs. Basal and CCL19-specific migration levels were higher in SLE pDCs. Altered DC function in SLE had no correlative changes in chemokine receptor expression, whereas immunisation-induced blood DC migration patterns in healthy donors were accompanied by changes in chemokine receptor expression. CONCLUSIONS: The phenotypic and migratory disturbances observed in SLE blood DCs could result in altered distribution of DCs in peripheral tissues, contributing to dysregulated immune responses and autoimmunity.


Asunto(s)
Células Dendríticas/inmunología , Lupus Eritematoso Sistémico/inmunología , Receptores de Quimiocina/sangre , Adulto , Autoinmunidad/inmunología , Diferenciación Celular/inmunología , Quimiotaxis/inmunología , Toxina Diftérica/inmunología , Femenino , Citometría de Flujo/métodos , Humanos , Inmunofenotipificación , Persona de Mediana Edad , Monocitos/inmunología , Toxina Tetánica/inmunología , Adulto Joven
17.
Nat Struct Mol Biol ; 27(3): 233-239, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066964

RESUMEN

Genome regulation requires control of chromosome organization by SMC-kleisin complexes. The cohesin complex contains the Smc1 and Smc3 subunits that associate with the kleisin Scc1 to form a ring-shaped complex that can topologically engage chromatin to regulate chromatin structure. Release from chromatin involves opening of the ring at the Smc3-Scc1 interface in a reaction that is controlled by acetylation and engagement of the Smc ATPase head domains. To understand the underlying molecular mechanisms, we have determined the 3.2-Šresolution cryo-electron microscopy structure of the ATPγS-bound, heterotrimeric cohesin ATPase head module and the 2.1-Šresolution crystal structure of a nucleotide-free Smc1-Scc1 subcomplex from Saccharomyces cerevisiae and Chaetomium thermophilium. We found that ATP-binding and Smc1-Smc3 heterodimerization promote conformational changes within the ATPase that are transmitted to the Smc coiled-coil domains. Remodeling of the coiled-coil domain of Smc3 abrogates the binding surface for Scc1, thus leading to ring opening at the Smc3-Scc1 interface.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaetomium/química , Chaetomium/genética , Chaetomium/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Clonación Molecular , Microscopía por Crioelectrón , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Cohesinas
18.
J Med Chem ; 63(2): 601-612, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31859507

RESUMEN

The serine/threonine kinase TBK1 (TANK-binding kinase 1) and its homologue IKKε are noncanonical members of the inhibitor of the nuclear factor κB (IκB) kinase family. These kinases play important roles in multiple cellular pathways and, in particular, in inflammation. Herein, we describe our investigations on a family of benzimidazoles and the identification of the potent and highly selective TBK1/IKKε inhibitor BAY-985. BAY-985 inhibits the cellular phosphorylation of interferon regulatory factor 3 and displays antiproliferative efficacy in the melanoma cell line SK-MEL-2 but showed only weak antitumor activity in the SK-MEL-2 human melanoma xenograft model.


Asunto(s)
Quinasa I-kappa B/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Bencimidazoles/síntesis química , Bencimidazoles/farmacología , Sitios de Unión , Cristalografía por Rayos X , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Humanos , Modelos Moleculares , Fosforilación , Relación Estructura-Actividad , Especificidad por Sustrato
19.
Elife ; 72018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30109982

RESUMEN

The cohesin ring complex is required for numerous chromosomal transactions including sister chromatid cohesion, DNA damage repair and transcriptional regulation. How cohesin engages its chromatin substrate has remained an unresolved question. We show here, by determining a crystal structure of the budding yeast cohesin HEAT-repeat subunit Scc3 bound to a fragment of the Scc1 kleisin subunit and DNA, that Scc3 and Scc1 form a composite DNA interaction module. The Scc3-Scc1 subcomplex engages double-stranded DNA through a conserved, positively charged surface. We demonstrate that this conserved domain is required for DNA binding by Scc3-Scc1 in vitro, as well as for the enrichment of cohesin on chromosomes and for cell viability. These findings suggest that the Scc3-Scc1 DNA-binding interface plays a central role in the recruitment of cohesin complexes to chromosomes and therefore for cohesin to faithfully execute its functions during cell division.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/administración & dosificación , Proteínas de Ciclo Celular/química , División Celular/genética , Cromatina/química , Proteínas Cromosómicas no Histona/administración & dosificación , Proteínas Cromosómicas no Histona/química , Cromosomas/química , ADN/química , ADN/genética , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Complejos Multiproteicos , Proteínas de Saccharomyces cerevisiae/química , Cohesinas
20.
Cell Rep ; 24(13): 3477-3487.e6, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30257209

RESUMEN

Nuclear protein in testis (Nut) is a universal oncogenic driver in the highly aggressive NUT midline carcinoma, whose physiological function in male germ cells has been unclear. Here we show that expression of Nut is normally restricted to post-meiotic spermatogenic cells, where its presence triggers p300-dependent genome-wide histone H4 hyperacetylation, which is essential for the completion of histone-to-protamine exchange. Accordingly, the inactivation of Nut induces male sterility with spermatogenesis arrest at the histone-removal stage. Nut uses p300 and/or CBP to enhance acetylation of H4 at both K5 and K8, providing binding sites for the first bromodomain of Brdt, the testis-specific member of the BET family, which subsequently mediates genome-wide histone removal. Altogether, our data reveal the detailed molecular basis of the global histone hyperacetylation wave, which occurs before the final compaction of the male genome.


Asunto(s)
Histonas/metabolismo , Infertilidad Masculina/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Espermatozoides/metabolismo , Acetilación , Animales , Código de Histonas , Histonas/química , Masculino , Ratones , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Unión Proteica , Espermatogénesis , Xenopus , Factores de Transcripción p300-CBP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA