Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000257

RESUMEN

Lipid mediators from fatty acid oxidation have been shown to be associated with the severity of Krabbe disease (KD), a disorder linked to mutations in the galactosylceramidase (GALC) gene. This study aims to investigate the effects of n-3 polyunsaturated fatty acid (PUFA) supplementation on KD traits and fatty acid metabolism using Twitcher (Tw) animals as a natural model for KD. Wild-type (Wt), heterozygous (Ht), and affected Tw animals were treated orally with 36 mg n-3 PUFAs/kg body weight/day from 10 to 35 days of life. The end product of PUFA peroxidation (8-isoprostane), the lipid mediator involved in the resolution of inflammatory exudates (resolvin D1), and the total amount of n-3 PUFAs were analyzed in the brains of mice. In Tw mice, supplementation with n-3 PUFAs delayed the manifestation of disease symptoms (p < 0.0001), and in the bran, decreased 8-isoprostane amounts (p < 0.0001), increased resolvin D1 levels (p < 0.005) and increased quantity of total n-3 PUFAs (p < 0.05). Furthermore, total brain n-3 PUFA levels were associated with disease severity (r = -0.562, p = 0.0001), resolvin D1 (r = 0.712, p < 0.0001), and 8-isoprostane brain levels (r = -0.690, p < 0.0001). For the first time in a natural model of KD, brain levels of n-3 PUFAs are shown to determine disease severity and to be involved in the peroxidation of brain PUFAs as well as in the production of pro-resolving lipid mediators. It is also shown that dietary supplementation with n-3 PUFAs leads to a slowing of the phenotypic presentation of the disease and restoration of lipid mediator production.


Asunto(s)
Encéfalo , Suplementos Dietéticos , Modelos Animales de Enfermedad , Ácidos Grasos Omega-3 , Leucodistrofia de Células Globoides , Animales , Ratones , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-3/administración & dosificación , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Leucodistrofia de Células Globoides/dietoterapia , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/tratamiento farmacológico , Leucodistrofia de Células Globoides/genética , Fenotipo , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Dinoprost/análogos & derivados , Dinoprost/metabolismo , Masculino
2.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362324

RESUMEN

Krabbe disease (KD) is a rare autosomal recessive disorder caused by mutations in the galactocerebrosidase gene (GALC). Defective GALC causes aberrant metabolism of galactolipids present almost exclusively in myelin, with consequent demyelinization and neurodegeneration of the central and peripheral nervous system (NS). KD shares some similar features with other neuropathies and heterozygous carriers of GALC mutations are emerging with an increased risk in developing NS disorders. In this work, we set out to identify possible variations in the proteomic profile of KD-carrier brain to identify altered pathways that may imbalance its homeostasis and that may be associated with neurological disorders. The differential analysis performed on whole brains from 33-day-old twitcher (galc -/-), heterozygous (galc +/-), and wild-type mice highlighted the dysregulation of several multifunctional factors in both heterozygous and twitcher mice. Notably, the KD-carrier mouse, despite its normal phenotype, presents the deregulation of vimentin, receptor of activated protein C kinase 1 (RACK1), myelin basic protein (MBP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP), transitional endoplasmic reticulum ATPase (VCP), and N-myc downstream regulated gene 1 protein (NDRG1) as well as changes in the ubiquitinated-protein pattern. Our findings suggest the carrier may be affected by dysfunctions classically associated with neurodegeneration: (i) alteration of (mechano) signaling and intracellular trafficking, (ii) a generalized affection of proteostasis and lipid metabolism, with possible defects in myelin composition and turnover, and (iii) mitochondrion and energy supply dysfunctions.


Asunto(s)
Leucodistrofia de Células Globoides , Enfermedades Neurodegenerativas , Animales , Ratones , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Proteómica , Modelos Animales de Enfermedad , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo
3.
J Neurosci Res ; 98(4): 718-733, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31797419

RESUMEN

In Krabbe disease, a mutation in GALC gene causes widespread demyelination determining cell death by apoptosis, mainly in oligodendrocytes and Schwann cells. Less is known on the molecular mechanisms induced by this deficiency. Here, we report an impairment in protein synthesis and degradation and in proteasomal clearance with a potential accumulation of the misfolded proteins and induction of the endoplasmic reticulum stress in the brain of 6-day-old twitcher mice (TM) (model of Krabbe disease). In particular, an imbalance of the immunoproteasome function was highlighted, useful for shaping adaptive immune response by neurological cells. Moreover, our data show an involvement of cytoskeleton remodeling in Krabbe pathogenesis, with a lamin meshwork disaggregation in twitcher oligodendrocytes in 6-day-old TM. This study provides interesting protein targets and mechanistic insight on the early onset of Krabbe disease that may be promising options to be tested in combination with currently available therapies to rescue Krabbe phenotype.


Asunto(s)
Leucodistrofia de Células Globoides/metabolismo , Enfermedades por Almacenamiento Lisosomal/metabolismo , Oligodendroglía/metabolismo , Proteostasis , Animales , Modelos Animales de Enfermedad , Femenino , Laminas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligodendroglía/ultraestructura , Proteómica
4.
J Cell Physiol ; 234(6): 9065-9076, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30367495

RESUMEN

Skin aging is a complex biological process influenced by a combination of endogenous or intrinsic and exogenous or extrinsic factors due to environmental damage. The primary environmental factor that causes human skin aging is the ultraviolet irradiation from the sun. Recently, it was established that the long-term exposure to light-emitting-diode-generated blue light (LED-BL) from electronic devices seems to have a relevant implication in the molecular mechanisms of premature photoaging. BL irradiation induces changes in the synthesis of various skin structures through DNA damage and overproduction of reactive oxygen species (ROS), matrix metalloproteinase-1 and -12, which are responsible for the loss of the main components of the extracellular matrix of skin like collagen type I and elastin. In the current study, using human keratinocytes and fibroblasts exposed to specific LED-BL radiation doses (45 and 15 J/cm 2 ), we produced an in vitro model of skin photoaging. We verified that, compared with untreated controls, the treatment with LED-BL irradiation results in the alteration of metalloprotease-1 (collagenase), metalloprotease-12 (elastase), 8-dihydroxy-2'-deoxyguanosine, proliferating cell nuclear antigen, and collagen type I. Moreover, we showed that the photoaging prevention is possible via the use of hydroxytyrosol extracted from olive fruits, well known for antioxidant properties. Our results demonstrated that hydroxytyrosol protects keratinocytes and fibroblasts from LED-BL-induced damage. Thus, hydroxytyrosol might be proposed as an encouraging candidate for the prevention of BL-induced premature photoaging.


Asunto(s)
Antioxidantes/farmacología , Fibroblastos/efectos de los fármacos , Frutas , Queratinocitos/efectos de los fármacos , Luz/efectos adversos , Olea , Alcohol Feniletílico/análogos & derivados , Protectores contra Radiación/farmacología , Envejecimiento de la Piel/efectos de los fármacos , Piel/efectos de los fármacos , Antioxidantes/aislamiento & purificación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Daño del ADN , Elastina/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/efectos de la radiación , Frutas/química , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Queratinocitos/efectos de la radiación , Metaloproteinasa 1 de la Matriz/genética , Metaloproteinasa 1 de la Matriz/metabolismo , Metaloproteinasa 12 de la Matriz/genética , Metaloproteinasa 12 de la Matriz/metabolismo , Olea/química , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Alcohol Feniletílico/aislamiento & purificación , Alcohol Feniletílico/farmacología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Protectores contra Radiación/aislamiento & purificación , Especies Reactivas de Oxígeno/metabolismo , Piel/metabolismo , Piel/patología , Piel/efectos de la radiación , Envejecimiento de la Piel/efectos de la radiación , Factores de Tiempo
5.
Acta Neurol Scand ; 140(5): 359-365, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31350907

RESUMEN

OBJECTIVES: Globoid cell leukodystrophy or Krabbe disease is an autosomal recessive lysosomal storage disorder characterized by a deficiency in galactosylceramidase (GALC) which hydrolyses galactosylceramide and galactosylsphingosine (psychosine). The accumulation of psychosine results in the apoptosis of myelin-forming cells. The goals of this research were to identify the heterozygous carriers of Krabbe disease in Sicily (Italy), to prevent the birth of foetuses affected by this disease, and eventually in the presence of positive embryos to direct them towards a treatment before symptoms occur when it is too late to receive a useful therapy. METHODS: Since more than 100 mutations have been reported as a cause of Krabbe disease, we started to screen relatives of the affected patients, whose mutation was known. We used a fast, sensitive and painless assay extracting genomic DNA from buccal swabs. The genotypes of single-nucleotide polymorphisms (SNPs) were analysed to identify the carriers of the selected mutations. RESULTS: In the last 2 years, we conducted the analysis of almost 100 subjects and individuated 40 heterozygotes carriers of Krabbe disease. One of the women examined was pregnant. CONCLUSIONS: The knowledge obtained from our investigations provided and will provide notable practical benefit to families in which the disease is manifested and to researchers who deal with this rare pathology. Finally, the results of our study will be useful to know the real incidence of Krabbe disease in a large territory where it is particularly present and to start a Krabbe's register, which at present does not exist.


Asunto(s)
Análisis Mutacional de ADN/métodos , Tamización de Portadores Genéticos/métodos , Leucodistrofia de Células Globoides/diagnóstico , Animales , Femenino , Genotipo , Heterocigoto , Humanos , Italia , Mutación
6.
Mol Cell Neurosci ; 88: 212-221, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29428877

RESUMEN

The purpose of this research was to explore the behavior of aquaporins (AQPs) in an in vitro model of Parkinson's disease that is a recurrent neurodegenerative disorder caused by the gradual, progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Because of postmortem studies have provided evidences for oxidative damage and alteration of water flow and energy metabolism, we carried out an investigation about AQP4 and 9, demonstrated in the brain to maintain water and energy homeostasis. As an appropriate in vitro cell model, we used SH-SY5Y cultures and induced their differentiation into a mature dopaminergic neuron phenotype with retinoic acid (RA) alone or in association with phorbol-12-myristate-13-acetate (MPA). The association RA plus MPA provided the most complete and mature neuron phenotype, as demonstrated by high levels of ß-Tubulin III, MAP-2, and tyrosine hydroxylase. After validation of cell differentiation, the neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and H2O2 were applied to reproduce a Parkinson's-like stress. The results confirmed RA/MPA differentiated SH-SY5Y as a useful in vitro system for studying neurotoxicity and for using in a MPTP and H2O2-induced Parkinson's disease cell model. Moreover, the data demonstrated that neuronal differentiation, neurotoxicity, neuroinflammation, and oxidative stress are strongly correlated with dynamic changes of AQP4 and 9 transcription and transduction. New in vitro and in vivo experiments are needed to confirm these innovative outcomes.


Asunto(s)
Acuaporina 4 , Acuaporinas , Diferenciación Celular/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Enfermedad de Parkinson/metabolismo , Acuaporina 4/efectos de los fármacos , Acuaporina 4/metabolismo , Acuaporinas/efectos de los fármacos , Acuaporinas/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Neuronas Dopaminérgicas/metabolismo , Humanos , Fármacos Neuroprotectores/farmacología , Tretinoina/farmacología , Tirosina 3-Monooxigenasa/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
7.
J Cell Physiol ; 233(3): 2279-2291, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28708257

RESUMEN

Chondrocytes are cells of articular cartilage particularly sensitive to water transport and ionic and osmotic changes from extracellular environment and responsible for the production of the synovial fluid. Aquaporins (AQPs) are a family of water and small solute transport channel proteins identified in several tissues, involved in physiological pathways and in manifold human diseases. In a recent period, AQP1 and 3 seem to have a role in metabolic water regulation in articular cartilage of load bearing joints. The aim of this study was to examine the levels of AQP1 and 3 during the chondrogenic differentiation of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT). For the determination of chondrogenic markers and AQPs levels, glycosaminoglycans (GAGs) quantification, immunocytochemistry, RT-PCR, and Western blot were used after 0, 7, 14, 21, and 28 days from the start of differentiation. At 21 days, chondrocytes derived from AT-MSCs were able to produce augmented content of GAGs and significant quantity of SOX-9, lubricin, aggrecan, and collagen type II, suggesting hyaline cartilage formation, in combination with an increase of AQP3 and AQP1. However, while AQP1 level decreased after 21 days; AQP3 reached higher values at 28 days. The expression of AQP1 and 3 is a manifestation of physiological adaptation of functionally mature chondrocytes able to respond to the change of their internal environment influenced by extracellular matrix. The alteration or loss of expression of AQP1 and 3 could contribute to destruction of chondrocytes and to development of cartilage damage.


Asunto(s)
Acuaporina 1/metabolismo , Acuaporina 3/metabolismo , Diferenciación Celular , Condrocitos/metabolismo , Condrogénesis , Células Madre Mesenquimatosas/metabolismo , Adulto , Agrecanos/genética , Agrecanos/metabolismo , Acuaporina 1/genética , Acuaporina 3/genética , Células Cultivadas , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Regulación de la Expresión Génica , Glicosaminoglicanos/metabolismo , Humanos , Cartílago Hialino/metabolismo , Fenotipo , Proteoglicanos/genética , Proteoglicanos/metabolismo , Interferencia de ARN , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección , Adulto Joven
8.
Artículo en Inglés | MEDLINE | ID: mdl-29733109

RESUMEN

This study reports the synthesis, molecular docking and biological evaluation of eight (5-8 and 5a-8a) newly synthesized thieno-pyrimidinone methanesulphonamide thio-derivatives. The synthetic route used to prepare the new isomers thioaryl and thio-cycloesyl derivatives of the heterocyclic system 6-phenylthieno[3,2]pyrimidinone was economically and environmentally very advantageous and characterized by the simplicity of procedure, reduction in isolation steps, purification phases, time, costs and waste production. The study in silico for the evaluation of cyclooxygenase (COX)-1 and COX-2 selective inhibition was carried out by AutoDock Vina, an open-source program for doing molecular docking which predicts the preferred orientation of one molecule to a second when bound to each other to form a stable complex. The research in vitro for the biological evaluation was performed by using human cartilage and chondrocytes cultures treated with 10 ng/mL of interleukin-1beta as inflammation models. The anti-inflammatory activity of each new compound at the concentration of 10 µmol/L was determined by assaying COX-2, inducible nitric oxide synthetase (iNOS) and intercellular adhesion molecule 1 (ICAM 1) through Western blot. The examined derivatives showed interesting pharmacological activity, and the compound N-[2-[2,4-difluorophenyl)thio]-4-oxo-6-phenylthieno[3,2-d]pyridine-34H-yl]methanesulphonamide (7) was excellent COX-2 inhibitor. In agreement with the biological data, compound 7 was able to fit into the active site of COX-2 with highest interaction energy. These results can support the design of novel specific inhibitors of COX-2 by the comparative modelling of COX-1 and COX-2 enzymes with the available pharmacophore.

9.
J Neurosci Res ; 94(11): 1220-30, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27638605

RESUMEN

Krabbe's disease (KD) is an autosomal recessive, neurodegenerative disorder. It is classified among the lysosomal storage diseases (LSDs). It was first described in , but the genetic defect for the galactocerebrosidase (GALC) gene was not discovered until the beginning of the 1970s, 20 years before the GALC cloning. Recently, in 2011, the crystal structures of the GALC enzyme and the GALC-product complex were obtained. For this, compared with other LSDs, the research on possible therapeutic interventions is much more recent. Thus, it is not surprising that some treatment options are still under preclinical investigation, whereas their relevance for other pathologies of the same group has already been tested in clinical studies. This is specifically the case for pharmacological chaperone therapy (PCT), a promising strategy for selectively correcting defective protein folding and trafficking and for enhancing enzyme activity by small molecules. These compounds bind directly to a partially folded biosynthetic intermediate, stabilize the protein, and allow completion of the folding process to yield a functional protein. Here, we review the chaperones that have demonstrated potential therapeutics during preclinical studies for KD, underscoring the requirement to invigorate research for KD-addressed PCT that will benefit from recent insights into the molecular understanding of GALC structure, drug design, and development in cellular models. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Leucodistrofia de Células Globoides/tratamiento farmacológico , Chaperonas Moleculares/uso terapéutico , Animales , Humanos , Chaperonas Moleculares/metabolismo
10.
J Neurosci Res ; 94(11): 1284-92, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27638610

RESUMEN

This Review describes some in vitro approaches used to investigate the mechanisms involved in Krabbe's disease, with particular regard to the cellular systems employed to study processes of inflammation, apoptosis, and angiogenesis. The aim was to update the knowledge on the results obtained from in vitro models of this neurodegenerative disorder and provide stimuli for future research. For a long time, the nonavailability of established neural cells has limited the understanding of neuropathogenic mechanisms in Krabbe's leukodystrophy. More recently, the development of new Krabbe's disease cell models has allowed the identification of neurologically relevant pathogenic cascades, including the major role of elevated psychosine levels. Thus, direct and/or indirect roles of psychosine in the release of cytokines, reactive oxygen species, and nitric oxide and in the activation of kinases, caspases, and angiogenic factors results should be clearer. In parallel, it is now understood that the presence of globoid cells precedes oligodendrocyte apoptosis and demyelination. The information described here will help to continue the research on Krabbe's leukodystrophy and on potential new therapeutic approaches for this disease that even today, despite numerous attempts, is without cure. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/metabolismo , Leucodistrofia de Células Globoides/metabolismo , Leucodistrofia de Células Globoides/patología , Psicosina/metabolismo , Animales , Apoptosis/fisiología , Citocinas/metabolismo , Humanos , Técnicas In Vitro , Inflamación/etiología , Leucodistrofia de Células Globoides/complicaciones , Neovascularización Patológica/etiología , Especies Reactivas de Oxígeno
11.
J Neurosci Res ; 94(11): 1318-26, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27638613

RESUMEN

Krabbe's disease is a neurodegenerative disorder caused by deficiency of galactocerebrosidase activity that affects the myelin sheath of the nervous system, involving dysfunctional metabolism of sphingolipids. It has no cure. Because substrate inhibition therapy has been shown to be effective in some human lysosomal storage diseases, we hypothesize that a substrate inhibition therapeutic approach might be appropriate to allow correction of the imbalance between formation and breakdown of glycosphingolipids and to prevent pathological storage of psychosine. The enzyme responsible for the biosynthesis of galactosylceramide and psychosine is uridine diphosphate-galactose ceramide galactosyltransferase (2-hydroxyacylsphingosine 1-ß-galactosyltransferase; UGT8; EC 2.4.1.45), which catalyzes the transferring of galactose from uridine diphosphate-galactose to ceramide or sphingosine, an important step of the biosynthesis of galactosphingolipids. Because some bisphosphonates have been identified as selective galactosyltransferase inhibitors, we verify the binding affinity to a generated model of the enzyme UGT8 and investigate the molecular mechanisms of UGT8-ligand interactions of the bisphosphonate zoledronate by a multistep framework combining homology modeling, molecular docking, and molecular dynamics simulations. From structural information on UGTs' active site stereochemistry, charge density, and access through the hydrophobic environment, the molecular docking procedure allowed us to identify zoledronate as a potential inhibitor of human ceramide galactosyltransferase. More importantly, zoledronate derivates were designed through computational modeling as putative new inhibitors. Experiments in vivo and in vitro have been planned to verify the possibility of using zoledronate and/or the newly identified inhibitors of UGT8 for a substrate inhibition therapy useful for treatment of Krabbe's disease and/or other lysosomal disorders. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Difosfonatos/farmacología , Inhibidores Enzimáticos/farmacología , Balactosiltransferasa de Gangliósidos/metabolismo , Imidazoles/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Animales , Difosfonatos/química , Inhibidores Enzimáticos/química , Balactosiltransferasa de Gangliósidos/antagonistas & inhibidores , Humanos , Imidazoles/química , Ácido Zoledrónico
12.
Mol Genet Metab ; 112(4): 294-301, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24913062

RESUMEN

Krabbe disease or globoid cell leukodystrophy is a degenerative, lysosomal storage disease resulting from the deficiency of ß-galactocerebrosidase activity. This enzyme catalyzes the lysosomal hydrolysis of galactocerebroside and psychosine. Krabbe disease is inherited as an autosomal recessive trait, and many of the 70 disease-causing mutations identified in the GALC gene are associated with protein misfolding. Recent studies have shown that enzyme inhibitors can sometimes translocate misfolded polypeptides to their appropriate target organelle bypassing the normal cellular quality control machinery and resulting in enhanced activity. In search for pharmacological chaperones that could rescue the ß-galactocerebrosidase activity, we investigated the effect of α-Lobeline or 3',4',7-trihydroxyisoflavone on several patient-derived fibroblast cell lines carrying missense mutations, rather than on transduced cell lines. Incubation of these cell lines with α-lobeline or 3',4',7-trihydroxyisoflavone leads to an increase of ß-galacocerebrosidase activity in p.G553R + p.G553R, in p.E130K + p.N295T and in p.G57S + p.G57S mutant forms over the critical threshold. The low but sustained expression of ß-galactocerebrosidase induced by these compounds is a promising result; in fact, it is known that residual enzyme activity of only 15-20% is sufficient for clinical efficacy. The molecular interaction of the two chaperones with ß-galactocerebrosidase is also supported by in silico analysis. Collectively, our combined in silico-in vitro approach indicate α-lobeline and 3',4',7-trihydroxyisoflavone as two potential pharmacological chaperones for the treatment or improvement of quality of life in selected Krabbe disease patients.


Asunto(s)
Fibroblastos/enzimología , Galactosilceramidasa/metabolismo , Isoflavonas/farmacología , Leucodistrofia de Células Globoides/enzimología , Lobelina/farmacología , Animales , Células COS , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Simulación por Computador , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Homocigoto , Humanos , Isoflavonas/química , Isoflavonas/uso terapéutico , Leucodistrofia de Células Globoides/tratamiento farmacológico , Leucodistrofia de Células Globoides/patología , Lobelina/química , Lobelina/uso terapéutico , Ratones , Modelos Moleculares , Mutación Missense/genética , Especificidad por Sustrato
13.
Molecules ; 19(5): 6106-22, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24830713

RESUMEN

The aims of this study were: (i) to explore the structure-activity relationship of some new anti-inflammatory benzothieno[3,2-d]pyrimidin-4-one sulphonamide thio-derivatives 1-11; and (ii) to evaluate the possibility of using the most active compounds as fluorescent probes to determine tumours or their progression. Therefore, to know the precise mechanism by which these compounds interact with cyclooxygenase (COX)-2 enzyme, a molecular docking study was carried out; to assess spectroscopic characteristics, their absorption and emission properties were determined. The results demonstrated that some derivatives of benzothieno[3,2-d] pyrimidine exhibit interesting anti-inflammatory properties related to interactions with active sites of COX-2 and are fluorescent. The antipyrine-bearing compound 4 displayed high COX-2 affinity (ΔG = -9.4) and good fluorescent properties (Φfl = 0.032). Thus, some members of this new class of anti-inflammatory may be promising for fluorescence imaging of cancer cells that express the COX-2 enzyme. Further in vitro and in vivo studies are needed to confirm this hypothesis.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/química , Inflamación/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Sulfonamidas/química , Antiinflamatorios/farmacología , Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa/farmacología , Fluorescencia , Humanos , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/farmacología
14.
J Neurosci Res ; 91(2): 313-20, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23172800

RESUMEN

The present study analyzed the in vitro effects induced by sodium L-lactate on human astrocytes and the SH-SY5Y cell line, when added at concentrations of 5, 10, and 25 mmol/liter. Expression of brain-derived neurotrophic factor (BDNF), inducible nitric oxide synthase (iNOS), and heat shock protein 70 kDa (HSP70) was evaluated by Western blot analysis. Cell viability with MTT, release of nitric oxide (NO) through the Griess reaction, and production of BDNF by enzyme-linked immunoassay was determined. Data indicate that, in SH-SY5Y as well as in cortical astrocytes, after 4 hr sodium L-lactate increases the expression and release of BDNF, iNOS, and NO; after 24 hr, it turns is ineffective for the production of the neurotrophin in SH-SY5Y and not in astrocytes, but the expression of iNOS and release of NO appear to be further increased compared with those after 4 hr. Sodium L-lactate influences differently the expression of HSP70 in SH-SY5Y compared with astrocytes. We propose, based on these findings, that sodium L-lactate affects the expression of BDNF in SH-SY5Y and astrocytes in a different manner: high levels of iNOS and NO expressed in SH-SY5Y have a profound inhibitory effect on the release of BDNF related to a more limited production of HSP70 by SH-SY5Y. In conclusion, the results demonstrate differences in the responses of SH-SY5Y and astrocytes to stimulation by high levels of sodium L-lactate. Sodium L-lactate differently and dose and time dependently influences the expression and release of BDNF, iNOS, NO, and HSP70 depending on the cell type.


Asunto(s)
Astrocitos/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Lactato de Sodio/farmacología , Células Cultivadas , Corteza Cerebral/citología , Relación Dosis-Respuesta a Droga , Humanos , Técnicas para Inmunoenzimas , Neuroblastoma/patología , Factores de Tiempo
15.
Adv Drug Deliv Rev ; 203: 115132, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37918668

RESUMEN

The brain remains one of the most challenging therapeutic targets due to the low and selective permeability of the blood-brain barrier and complex architecture of the brain tissue. Nanomedicines, despite their relatively large size compared to small molecules and nucleic acids, are being heavily investigated as vehicles to delivery therapeutics into the brain. Here we elaborate on how nanomedicines may be used to treat rare neurodevelopmental disorders, using Krabbe disease (globoid cell leukodystrophy) to frame the discussion. As a monogenetic disorder and lysosomal storage disease affecting the nervous system, the lessons learned from examining nanoparticle delivery to the brain in the context of Krabbe disease can have a broader impact on the treatment of various other neurodevelopmental and neurodegenerative disorders. In this review, we introduce the epidemiology and genetic basis of Krabbe disease, discuss current in vitro and in vivo models of the disease, as well as current therapeutic approaches either approved or at different stage of clinical developments. We then elaborate on challenges in particle delivery to the brain, with a specific emphasis on methods to transport nanomedicines across the blood-brain barrier. We highlight nanoparticles for delivering therapeutics for the treatment of lysosomal storage diseases, classified by the therapeutic payload, including gene therapy, enzyme replacement therapy, and small molecule delivery. Finally, we provide some useful hints on the design of nanomedicines for the treatment of rare neurological disorders.


Asunto(s)
Leucodistrofia de Células Globoides , Enfermedades por Almacenamiento Lisosomal , Humanos , Leucodistrofia de Células Globoides/tratamiento farmacológico , Leucodistrofia de Células Globoides/genética , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo , Nanomedicina , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico
16.
Mol Genet Metab ; 100(3): 234-40, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20418135

RESUMEN

Krabbe disease or globoid cell leukodystrophy is an autosomal recessively inherited disorder caused by the deficiency of galactocerebrosidase, the lysosomal enzyme that catalyzes the hydrolysis of galactose from galactosylceramide and galactosylsphingosine (psychosine). Psychosine accumulation results in the loss of myelin and oligodendrocytes in the brain of Krabbe patients as well as twitcher mice (natural model of human Krabbe disease). The aim of the present research was to investigate in twitcher mice the potential role of a diet deficient in galactose enriched in soy isoflavones and a pool of antioxidants molecules, such as l-glutathione, coenzyme Q10, xanthophylls, in counteracting the toxic effects derived by psychosine accumulation. A second goal of this manuscript was to demonstrate suppression of the apoptotic effects of psychosine in cultured oligodendrocyte progenitor mice cells (OLP-II) with antioxidants. The affected twitcher mice began the milk-derivatives free diet on post-natal day 15 although they also received mother's milk until post-natal day 18. Nevertheless, average life span was increased 50%, from 32+/-2 to 48+/-3 days, onset of tremor was delayed 17 days (from 21 days in the untreated twitcher mice to 38 days in the treated affected mice) and the gait in the treated mice was normal until almost a week after the untreated animals died (38+/-1 days versus 32 days at death). Weight gain in the treated animals also progressed to 38 days compared with 22 days for the untreated affected twitcher mice. Protection of the OLP-II cells against psychosine was shown using the MTT test (the ability of the tetrazolium salt MTT to form a dark blue formazan product by mitochondrial dehydrogenase in viable cells) and assay of expression of p53 and TNF-related apoptosis-inducing ligand (TRAIL). The results showed a time-dependent and concentration-dependent decrease of OLP-II viability on exposure to psychosine and dose-dependent protection with the antioxidants xanthophylls and glutathione. They also demonstrated that psychosine-induced p53 induction of apoptosis and TNF-related apoptosis-inducing ligand receptors could be decreased by l-glutathione and xanthophylls. A dietary approach may constitute a promising clinical management of the late-infantile and juvenile forms of Krabbe leukodystrophy.


Asunto(s)
Antioxidantes/administración & dosificación , Isoflavonas/administración & dosificación , Leucodistrofia de Células Globoides/dietoterapia , Leucodistrofia de Células Globoides/prevención & control , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Galactosa/administración & dosificación , Glutatión/administración & dosificación , Humanos , Leucodistrofia de Células Globoides/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Oligodendroglía/efectos de los fármacos , Oligodendroglía/patología , Psicosina/toxicidad , Ubiquinona/administración & dosificación , Ubiquinona/análogos & derivados , Xantófilas/administración & dosificación
17.
Free Radic Biol Med ; 139: 46-54, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31100476

RESUMEN

Krabbe disease (KD) is a rare and devastating pediatric leukodystrophy caused by mutations in the galactocerebrosidase (GALC) gene. The disease leads to impaired myelin formation and extensive myelin damage in the brain. Oxidative stress is implicated in the pathogenesis of KD but insofar few information is available. The gray and white matter of the brain are rich in docosahexaenoic acid and adrenic acid respectively and under non-enzymatic oxidative stress, release isoprostanoids, i.e. F4-neuroprostanes (F4-NeuroPs) and F2-dihomo-isoprostanes (F2-dihomo-IsoPs). In this study, the formation of isoprostanoids in brain tissue was investigated in a well-established KD mouse model (twitcher) that recapitulates the human pathology. According to the genotype determinations, three groups of mice were selected: wild-type control mice (n = 13), heterozygotes mice (carriers of GALC mutations, n = 14) and homozygous twitcher mice (n = 13). Measurement of F2-dihomo-IsoP and F4-NeuroP levels were performed on whole brain tissue obtained at day 15 and day 35 of the life cycle. Brain isoprostanoid levels were significantly higher in the twitcher mice compared to the heterozygous and wild-type control mice. However, F2-dihomo-IsoP and F4-NeuroP levels did not differ in brain of day 15 compared to day 35 of the heterozygote mice. Interestingly, isoprostanoid levels were proportionally enhanced with disease severity (F2-dihomo-IsoPs, rho = 0.54; F4-NeuroPs, rho = 0.581; P values ≤ 0.05; n = 13). Our findings are the first to show the key role of polyunsaturated fatty acid oxidative damage to brain grey and white matter in the pathogenesis and progression of KD. This shed new insights on the biochemical indexes of KD progression, and potentially provide information for novel therapeutic targets.


Asunto(s)
Galactosilceramidasa/genética , Sustancia Gris/metabolismo , Isoprostanos/metabolismo , Leucodistrofia de Células Globoides/metabolismo , Neuroprostanos/metabolismo , Sustancia Blanca/metabolismo , Animales , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Galactosilceramidasa/deficiencia , Expresión Génica , Sustancia Gris/patología , Heterocigoto , Homocigoto , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/patología , Ratones , Mutación , Estrés Oxidativo , Índice de Severidad de la Enfermedad , Sustancia Blanca/patología
18.
Cells ; 7(11)2018 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-30400272

RESUMEN

The development in digital screen technology has exponentially increased in the last decades, and many of today's electronic devices use light-emitting diode (LED) technology producing very strong blue light (BL) waves. Long-term exposure at LED-BL seems to have an implication in the dehydration of the epidermis, in the alterations of shape and number of the keratinocytes, and in the aging of the skin. Aquaporins (AQPs) are water membrane channels that permeate both water and glycerol and play an important role in the hydration of epidermis, as well as in proliferation and differentiation of keratinocytes. Thus, we have hypothesized that AQPs could be involved in the aging of the skin exposed to LED-BL. Therefore, we have examined the expression of AQPs in human keratinocytes exposed to LED-BL at dose of 45 J/cm², used as an in vitro model to produce the general features of photo aging of the skin. The aim was to verify if LED-BL induces changes of the basal levels of AQPs. The keratinocytes exposure to LED-BL produced an increase of reactive oxygen species (ROS), an activation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), an alteration of proliferating cell nuclear antigen (PCNA), and a down-regulation of AQP1, 3 and 9. These findings are preliminary evidences that may be used as starting points for further investigations about the mechanistic involvement of AQP1, 3, and 9 in LED-BL-induced skin aging.

19.
Mol Neurobiol ; 54(10): 8308-8320, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27921242

RESUMEN

Aquaporins (AQPs) are 13 integral membrane proteins that provide selective pores for the rapid movement of water and other uncharged solutes, across cell membranes. Recently, AQPs have been focused for their role in production, circulation, and homeostasis of the cerebrospinal fluid and their importance in several human diseases is becoming clear. This study investigated the time course (0, 14, and 28 days) of AQP1, 4, 7, 8, and 9 during the neural differentiation of human mesenchymal stem cells (MSCs) from adipose tissue (AT). For this purpose, two different media, enriched with serum or B-27 and N1 supplements, were applied to give a stimulus toward neural lineage. After 14 days, the cells were cultured with neuronal or glial differentiating medium for further 14 days. The results confirmed that AT-MSCs could be differentiated into neurons, astrocytes, and oligodendrocytes, expressing not only the typical neural markers but also specific AQPs depending on differentiated cell type. Our data demonstrated that at 28 days, AT-MSCs express only AQP1; astrocytes AQP1, 4, and 7; oligodendrocytes AQP1, 4, and 8; and finally neurons AQP1 and 7. This study provides fundamental insight into the biology of the mesenchymal stem cells and it suggests that AQPs can be potential neural markers.


Asunto(s)
Tejido Adiposo/metabolismo , Acuaporinas/biosíntesis , Diferenciación Celular/fisiología , Células Madre Mesenquimatosas/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Tejido Adiposo/citología , Adulto , Acuaporinas/genética , Células Cultivadas , Femenino , Expresión Génica , Humanos , Masculino , Fenotipo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA