Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Anesth Analg ; 132(6): 1614-1625, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33332892

RESUMEN

Preclinical investigations in animal models have consistently demonstrated neurobiological changes and life-long cognitive deficits following exposure to widely used anesthetics early in life. However, the mechanisms by which these exposures affect brain function remain poorly understood, therefore, limiting the efficacy of current diagnostic and therapeutic options in human studies. The human brain exhibits an abundant expression of long noncoding RNAs (lncRNAs). These biologically active transcripts play critical roles in a diverse array of functions, including epigenetic regulation. Changes in lncRNA expression have been linked with brain development, normal CNS processes, brain injuries, and the development of neurodegenerative diseases, and many lncRNAs are known to have brain-specific expression. Aberrant lncRNA expression has also been implicated in areas of growing importance in anesthesia-related research, including anesthetic-induced developmental neurotoxicity (AIDN), a condition defined by neurological changes occurring in patients repeatedly exposed to anesthesia, and the related condition of perioperative neurocognitive disorder (PND). In this review, we detail recent advances in PND and AIDN research and summarize the evidence supporting roles for lncRNAs in the brain under both normal and pathologic conditions. We also discuss lncRNAs that have been linked with PND and AIDN, and conclude with a discussion of the clinical potential for lncRNAs to serve as diagnostic and therapeutic targets for the prevention of these neurocognitive disorders and the challenges facing the identification and characterization of associated lncRNAs.


Asunto(s)
Anestésicos/efectos adversos , Trastornos Neurocognitivos/inducido químicamente , Trastornos Neurocognitivos/genética , Atención Perioperativa/métodos , ARN Largo no Codificante/fisiología , Anestésicos/administración & dosificación , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Humanos , Trastornos Neurocognitivos/diagnóstico
2.
BMC Cardiovasc Disord ; 18(1): 197, 2018 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-30342478

RESUMEN

Long noncoding RNAs (lncRNAs) are endogenous RNA transcripts longer than 200 nucleotides which regulate epigenetically the expression of genes but do not have protein-coding potential. They are emerging as potential key regulators of diabetes mellitus and a variety of cardiovascular diseases. Diabetic cardiomyopathy (DCM) refers to diabetes mellitus-elicited structural and functional abnormalities of the myocardium, beyond that caused by ischemia or hypertension. The purpose of this review was to summarize current status of lncRNA research for DCM and discuss the challenges and possible strategies of lncRNA research for DCM. A systemic search was performed using PubMed and Google Scholar databases. Major conference proceedings of diabetes mellitus and cardiovascular disease occurring between January, 2014 to August, 2018 were also searched to identify unpublished studies that may be potentially eligible. The pathogenesis of DCM involves elevated oxidative stress, myocardial inflammation, apoptosis, and autophagy due to metabolic disturbances. Thousands of lncRNAs are aberrantly regulated in DCM. Manipulating the expression of specific lncRNAs, such as H19, metastasis-associated lung adenocarcinoma transcript 1, and myocardial infarction-associated transcript, with genetic approaches regulates potently oxidative stress, myocardial inflammation, apoptosis, and autophagy and ameliorates DCM in experimental animals. The detail data regarding the regulation and function of individual lncRNAs in DCM are limited. However, lncRNAs have been considered as potential diagnostic and therapeutic targets for DCM. Overexpression of protective lncRNAs and knockdown of detrimental lncRNAs in the heart are crucial for defining the role and function of lncRNAs of interest in DCM, however, they are technically challenging due to the length, short life, and location of lncRNAs. Gene delivery vectors can provide exogenous sources of cardioprotective lncRNAs to ameliorate DCM, and CRISPR-Cas9 genome editing technology may be used to knockdown specific lncRNAs in DCM. In summary, current data indicate that LncRNAs are a vital regulator of DCM and act as the promising diagnostic and therapeutic targets for DCM.


Asunto(s)
Cardiomiopatías Diabéticas/genética , Miocardio/metabolismo , ARN Largo no Codificante/genética , Animales , Cardiomiopatías Diabéticas/diagnóstico , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/terapia , Regulación de la Expresión Génica , Terapia Genética/métodos , Humanos , Miocardio/patología , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/uso terapéutico
3.
Redox Biol ; 70: 103077, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359749

RESUMEN

Inflammatory diseases present a serious health challenge due to their widespread prevalence and the severe impact on patients' lives. In the quest to alleviate the burden of these diseases, nuclear factor erythroid 2-related factor 2 (Nrf2) has emerged as a pivotal player. As a transcription factor intimately involved in cellular defense against metabolic and oxidative stress, Nrf2's role in modulating the inflammatory responses of immune cells has garnered significant attention. Recent findings suggest that Nrf2's ability to alter the redox status of cells underlies its regulatory effects on immune responses. Our review delves into preclinical and clinical evidence that underscores the complex influence of Nrf2 activators on immune cell phenotypes, particularly in the inflammatory milieu. By offering a detailed analysis of Nrf2's role in different immune cell populations, we cast light on the potential of Nrf2 activators in shaping the immune response towards a more regulated state, mitigating the adverse effects of inflammation through modeling redox status of immune cells. Furthermore, we explore the innovative use of nanoencapsulation techniques that enhance the delivery and efficacy of Nrf2 activators, potentially advancing the treatment strategies for inflammatory ailments. We hope this review will stimulate the development and expansion of Nrf2-targeted treatments that could substantially improve outcomes for patients suffering from a broad range of inflammatory diseases.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Antioxidantes/metabolismo , Inmunidad
4.
Sci Adv ; 10(20): eadn2136, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758799

RESUMEN

Monocytes are immune regulators implicated in the pathogenesis of type 1 diabetes (T1D), an autoimmune disease that targets insulin-producing pancreatic ß cells. We determined that monocytes of recent onset (RO) T1D patients and their healthy siblings express proinflammatory/cytolytic transcriptomes and hypersecrete cytokines in response to lipopolysaccharide exposure compared to unrelated healthy controls (uHCs). Flow cytometry measured elevated circulating abundances of intermediate monocytes and >2-fold more CD14+CD16+HLADR+KLRD1+PRF1+ NK-like monocytes among patients with ROT1D compared to uHC. The intermediate to nonclassical monocyte ratio among ROT1D patients correlated with the decline in functional ß cell mass during the first 24 months after onset. Among sibling nonprogressors, temporal decreases were measured in the intermediate to nonclassical monocyte ratio and NK-like monocyte abundances; these changes coincided with increases in activated regulatory T cells. In contrast, these monocyte populations exhibited stability among T1D progressors. This study associates heightened monocyte proinflammatory/cytolytic activity with T1D susceptibility and progression and offers insight to the age-dependent decline in T1D susceptibility.


Asunto(s)
Diabetes Mellitus Tipo 1 , Progresión de la Enfermedad , Monocitos , Humanos , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/patología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Monocitos/metabolismo , Monocitos/inmunología , Masculino , Femenino , Adolescente , Niño , Adulto , Citocinas/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Adulto Joven , Estudios de Casos y Controles
5.
Antioxidants (Basel) ; 12(4)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37107272

RESUMEN

Metabolic imbalances and persistent hyperglycemia are widely recognized as driving forces for augmented cytosolic and mitochondrial reactive oxygen species (ROS) in diabetes mellitus (DM), fostering the development of vascular complications such as diabetic nephropathy, diabetic cardiomyopathy, diabetic neuropathy, and diabetic retinopathy. Therefore, specific therapeutic approaches capable of modulating oxidative milieu may provide a preventative and/or therapeutic benefit against the development of cardiovascular complications in diabetes patients. Recent studies have demonstrated epigenetic alterations in circulating and tissue-specific long non-coding RNA (lncRNA) signatures in vascular complications of DM regulating mitochondrial function under oxidative stress. Intriguingly, over the past decade mitochondria-targeted antioxidants (MTAs) have emerged as a promising therapeutic option for managing oxidative stress-induced diseases. Here, we review the present status of lncRNA as a diagnostic biomarker and potential regulator of oxidative stress in vascular complications of DM. We also discuss the recent advances in using MTAs in different animal models and clinical trials. We summarize the prospects and challenges for the use of MTAs in treating vascular diseases and their application in translation medicine, which may be beneficial in MTA drug design development, and their application in translational medicine.

6.
ACS Omega ; 8(17): 14985-15002, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37151537

RESUMEN

Antidiabetic drugs that have a secondary pharmacological effect on angiogenesis inhibition may help diabetic patients delay or avoid comorbidities caused by angiogenesis including malignancies. In recent studies, saroglitazar has exhibited antiangiogenic effects in diabetic retinopathy. The current study investigates the antiangiogenic effects of saroglitazar utilizing the chicken chorioallantoic membrane (CAM) assay and then identifies its precise mode of action on system-level protein networks. To determine the regulatory effect of saroglitazar on the protein-protein interaction network (PIN), 104 target genes were retrieved and tested using an acid server and Swiss target prediction tools. A string-based interactome was created and analyzed using Cytoscape. It was determined that the constructed network was scale-free, making it biologically relevant. Upon topological analysis of the network, 37 targets were screened on the basis of centrality values. Submodularization of the interactome resulted in the formation of four clusters. A total of 20 common targets identified in topological analysis and modular analysis were filtered. A total of 20 targets were compiled and were integrated into the pathway enrichment analysis using ShinyGO. The majority of hub genes were associated with cancer and PI3-AKT signaling pathways. Molecular docking was utilized to reveal the most potent target, which was validated by using molecular dynamic simulations and immunohistochemical staining on the chicken CAM. The comprehensive study offers an alternate research paradigm for the investigation of antiangiogenic effects using CAM assays. This was followed by the identification of the precise off-target use of saroglitazar using system biology and network pharmacology to inhibit angiogenesis.

7.
Sci Rep ; 12(1): 3306, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228584

RESUMEN

The incidence of type 1 diabetes (T1D) has increased, coinciding with lifestyle changes that have likely altered the gut microbiota. Dysbiosis, gut barrier dysfunction, and elevated systemic inflammation consistent with microbial antigen exposure, have been associated with T1D susceptibility and progression. A 6-week, single-arm, open-label pilot trial was conducted to investigate whether daily multi-strain probiotic supplementation could reduce this familial inflammation in 25 unaffected siblings of T1D patients. Probiotic supplementation was well-tolerated as reflected by high participant adherence and no adverse events. Community alpha and beta diversity were not altered between the pre- and post-supplement stool samplings. However, LEfSe analyses identified post-supplement enrichment of the family Lachnospiraceae, producers of the anti-inflammatory short chain fatty acid butyrate. Systemic inflammation was measured by plasma-induced transcription and quantified with a gene ontology-based composite inflammatory index (I.I.com). Post-supplement I.I.com was significantly reduced and pathway analysis predicted inhibition of numerous inflammatory mediators and activation of IL10RA. Subjects with the greatest post-supplement reduction in I.I.com exhibited significantly lower CD4+ CD45RO+ (memory):CD4+ CD45RA+ (naïve) T-cell ratios after supplementation. Post-supplement IL-12p40, IL-13, IL-15, IL-18, CCL2, and CCL24 plasma levels were significantly reduced, while post-supplement butyrate levels trended 1.4-fold higher. Probiotic supplementation may modify T1D susceptibility and progression and warrants further study.


Asunto(s)
Diabetes Mellitus Tipo 1 , Probióticos , Diabetes Mellitus Tipo 1/terapia , Humanos , Inflamación , Proyectos Piloto , Probióticos/uso terapéutico , Hermanos
8.
Gut Microbes ; 14(1): 2136467, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36261888

RESUMEN

The increasing incidence of Type 1 diabetes has coincided with the emergence of the low-fiber, high-gluten Western diet and other environmental factors linked to dysbiosis. Since Lactiplantibacillus plantarum 299 v (Lp299v) supplementation improves gut barrier function and reduces systemic inflammation, we studied its effects in spontaneously diabetic DRlyp/lyp rats provided a normal cereal diet (ND) or a gluten-free hydrolyzed casein diet (HCD). All rats provided ND developed diabetes (62.5±7.7 days); combining ND with Lp299v did not improve survival. Diabetes was delayed by HCD (72.2±9.4 days, p = .01) and further delayed by HCD+Lp299v (84.9±14.3 days, p < .001). HCD+Lp299v pups exhibited increased plasma propionate and butyrate levels, which correlated with enriched fecal Bifidobacteriaceae and Clostridiales taxa. Islet transcriptomic and histologic analyses at 40-days of age revealed that rats fed HCD expressed an autophagy profile, while those provided HCD+Lp299v expressed ER-associated protein degradation (ERAD) and antioxidative defense pathways, including Nrf2. Exposing insulinoma cells to propionate and butyrate promoted the antioxidative defense response but did not recapitulate the HCD+Lp299v islet ERAD transcriptomic profile. Here, both diet and microbiota influenced diabetes susceptibility. Moreover, Lp299v supplement modulated antioxidative defense and ER stress responses in ß-cells, potentially offering a new therapeutic direction to thwart diabetes progression and preserve insulin secretion.


Asunto(s)
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Lactobacillus plantarum , Ratas , Animales , Diabetes Mellitus Tipo 1/prevención & control , Diabetes Mellitus Tipo 1/metabolismo , Factor 2 Relacionado con NF-E2 , Antioxidantes , Caseínas , Propionatos , Suplementos Dietéticos , Butiratos
9.
Front Cardiovasc Med ; 8: 737512, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660740

RESUMEN

Advances in the field of regenerative medicine and tissue engineering over the past few decades have paved the path for cell-free therapy. Numerous stem cell types, including mesenchymal stem cells (MSCs), have been reported to impart therapeutic effects via paracrine secretion of exosomes. The underlying factors and the associated mechanisms contributing to these MSC-derived exosomes' protective effects are, however, poorly understood, limiting their application in the clinic. The exosomes exhibit a diversified repertoire of functional non-coding RNAs (ncRNAs) and have the potential to transfer these biologically active transcripts to the recipient cells, where they are found to modulate a diverse array of functions. Altered expression of the ncRNAs in the exosomes has been linked with the regenerative potential and development of various diseases, including cardiac, neurological, skeletal, and cancer. Also, modulating the expression of ncRNAs in these exosomes has been found to improve their therapeutic impact. Moreover, many of these ncRNAs are expressed explicitly in the MSC-derived exosomes, making them ideal candidates for regenerative medicine, including tissue engineering research. In this review, we detail the recent advances in regenerative medicine and summarize the evidence supporting the altered expression of the ncRNA repertoire specific to MSCs under different degenerative diseases. We also discuss the therapeutic role of these ncRNA for the prevention of these various degenerative diseases and their future in translational medicine.

10.
Sci Rep ; 11(1): 2571, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510471

RESUMEN

Diabetic cardiomyopathy (DCM) lacks diagnostic biomarkers. Circulating long non-coding RNAs (lncRNAs) can serve as valuable diagnostic biomarkers in cardiovascular disease. To seek potential lncRNAs as a diagnostic biomarker for DCM, we investigated the genome-wide expression profiling of circulating lncRNAs and mRNAs in type 2 diabetic db/db mice with and without DCM and performed bioinformatic analyses of the deregulated lncRNA-mRNA co-expression network. Db/db mice had obesity and hyperglycemia with normal cardiac function at 6 weeks of age (diabetes without DCM) but with an impaired cardiac function at 20 weeks of age (DCM) on an isolated Langendorff apparatus. Compared with the age-matched controls, 152 circulating lncRNAs, 127 mRNAs and 3355 lncRNAs, 2580 mRNAs were deregulated in db/db mice without and with DCM, respectively. The lncRNA-mRNA co-expression network analysis showed that five deregulated lncRNAs, XLOC015617, AK035192, Gm10435, TCR-α chain, and MouselincRNA0135, have the maximum connections with differentially expressed mRNAs. Bioinformatic analysis revealed that these five lncRNAs were highly associated with the development and motion of myofilaments, regulation of inflammatory and immune responses, and apoptosis. This finding was validated by the ultrastructural examination of myocardial samples from the db/db mice with DCM using electron microscopy and changes in the expression of myocardial tumor necrosis factor-α and phosphorylated p38 mitogen-activated protein kinase in db/db mice with DCM. These results indicate that XLOC015617, AK035192, Gm10435, TCR-α chain, and MouselincRNA0135 are crucial circulating lncRNAs in the pathogenesis of DCM. These five circulating lncRNAs may have high potential as a diagnostic biomarker for DCM.


Asunto(s)
Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Animales , MicroARN Circulante/genética , MicroARN Circulante/metabolismo , Biología Computacional , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
J Mol Model ; 26(10): 268, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32926296

RESUMEN

Quantum chemical calculations are well-equipped to provide answers to the questions regarding the different aspects of intermolecular interactions. We investigate the benzene, ethanol and 1,2 propanediol ternary mixture with theoretical as well as experimental UV-Vis spectroscopy. An extensive theoretical study on the molecular structure and UV-Vis spectral analysis was undertaken using density functional theory (DFT) method. Structural parameter analysis and the HOMO-LUMO (highest occupied molecular orbital-lowest unoccupied molecular orbital) energy gap help to describe the possible interaction between molecules in dimer and in combination. Interaction energy has been calculated from topological study. Time-dependent density functional theory (TDDFT) calculations on dimer/cluster in gas phase help to understand the effect of the molecular interaction on the overall spectral shift and related intensity variation. Our results show that in the ternary mixture, the interaction energies of the interactions are π-π interaction: 0.52-2.57 kcal/mol, Hp-π interaction: 1.15 kcal/mol and H-bonding: 2.49 to 4.46 kcal/mol. The π-π interaction and H-bonding cause red shift in absorption spectra while Hp-π interaction causes blue shift. In the ternary mixture, the strength of different kinds of interaction depends on the concentration, and as each interaction has its own effect on spectral shift, the overall experimental spectra get broader and distorted from the Gaussian shape.

12.
Sci Rep ; 9(1): 15345, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31653946

RESUMEN

Diabetic cardiomyopathy is one of the main causes of heart failure and death in patients with diabetes. There are no effective approaches to preventing its development in the clinic. Long noncoding RNAs (lncRNA) are increasingly recognized as important molecular players in cardiovascular disease. Herein we investigated the profiling of cardiac lncRNA and mRNA expression in type 2 diabetic db/db mice with and without early diabetic cardiomyopathy. We found that db/db mice developed cardiac hypertrophy with normal cardiac function at 6 weeks of age but with a decreased diastolic function at 20 weeks of age. LncRNA and mRNA transcripts were remarkably different in 20-week-old db/db mouse hearts compared with both nondiabetic and diabetic controls. Overall 1479 lncRNA transcripts and 1109 mRNA transcripts were aberrantly expressed in 6- and 20-week-old db/db hearts compared with nondiabetic controls. The lncRNA-mRNA co-expression network analysis revealed that 5 deregulated lncRNAs having maximum connections with differentially expressed mRNAs were BC038927, G730013B05Rik, 2700054A10Rik, AK089884, and Daw1. Bioinformatics analysis revealed that these 5 lncRNAs are closely associated with membrane depolarization, action potential conduction, contraction of cardiac myocytes, and actin filament-based movement of cardiac cells. This study profiles differently expressed lncRNAs in type 2 mice with and without early diabetic cardiomyopathy and identifies BC038927, G730013B05Rik, 2700054A10Rik, AK089884, and Daw1 as the core lncRNA with high significance in diabetic cardiomyopathy.


Asunto(s)
Cardiomiopatías Diabéticas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genoma , ARN Largo no Codificante/genética , ARN Mensajero/genética , Animales , Glucemia/metabolismo , Peso Corporal , Diabetes Mellitus Experimental/genética , Cardiomiopatías Diabéticas/sangre , Cardiomiopatías Diabéticas/fisiopatología , Regulación hacia Abajo/genética , Ontología de Genes , Redes Reguladoras de Genes , Ventrículos Cardíacos/fisiopatología , Hemodinámica , Masculino , Ratones Endogámicos C57BL , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Regulación hacia Arriba/genética
13.
Diab Vasc Dis Res ; 16(1): 57-68, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30482051

RESUMEN

AIM: This study aims to investigate the altered expression signature of long non-coding RNAs, mRNAs and deregulated pathways related to diabetic cardiomyopathy disease pathogenesis. METHOD: We utilize the previously established in vitro diabetic cardiomyopathy model of human induced pluripotent stem cell-derived human cardiomyocytes to perform long non-coding RNA and mRNA expression analysis on glucose (11 mM), endothelin-1 (10 nM) and cortisol (1 µM) stimulated human induced pluripotent stem cell-derived human cardiomyocytes to interrogate diabetic cardiomyopathy associated RNA expression profile. RESULT: Out of 20,730 mRNAs and 40,173 long non-coding RNAs being screened, 2046 long non-coding RNAs and 1582 mRNAs were differentially regulated (fold change > 2, p < 0.05) between diabetic cardiomyopathy and control group, of which more than half were intergenic and antisense long non-coding RNAs. Most of the coding transcripts were associated with processes like inflammation, structural reorganization, metabolism, smooth muscle contraction, focal adhesion and repair contributing towards the development of diabetic cardiomyopathy. The subgroup analysis further revealed 411 long non-coding RNAs being co-expressed with neighbouring genes. However, our coding-non-coding co-expression analysis showed an overall 48,155 co-expression network connections. In addition to that, the long non-coding RNAs with highest network connections were profoundly enriched for focal adhesion, cell-matrix adhesion and muscle contraction. CONCLUSION: These results provide comprehensive data about the pathways and regulatory mechanisms associated with diabetic cardiomyopathy and indicate that long non-coding RNAs may play a crucial role in diabetic cardiomyopathy.


Asunto(s)
Cardiomiopatías Diabéticas/genética , Perfilación de la Expresión Génica/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/genética , Transcriptoma , Diferenciación Celular , Células Cultivadas , Cardiomiopatías Diabéticas/metabolismo , Endotelina-1/farmacología , Redes Reguladoras de Genes , Glucosa/farmacología , Humanos , Hidrocortisona/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Transcriptoma/efectos de los fármacos
14.
PLoS One ; 12(4): e0174546, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28426671

RESUMEN

Vicious cycles of mutations and reactive oxygen species (ROS) generation contribute to cancer progression. The use of antioxidants to inhibit ROS generation promotes cytostasis by affecting the mutation cycle and ROS-dependent survival signaling. However, cancer cells select mutations to elevate ROS albeit maintaining mitochondrial hyperpolarization (Δψm), even under hypoxia. From this perspective, the use of drugs that disrupt both ROS generation and Δψm is a viable anticancer strategy. Hence, we studied the effects of mitochondrially targeted carboxy proxyl nitroxide (Mito-CP) and a control ten carbon TPP moiety (Dec-TPP+) in the human Burkitt lymphoma cell line (Daudi) and normal peripheral blood mononuclear cells under hypoxia and normoxia. We found preferential localization, Δψm and adenosine triphosphate loss, and significant cytotoxicity by Mito-CP in Daudi cells alone. Interestingly, ROS levels were decreased and maintained in hypoxic and normoxic cancer cells, respectively, by Mito-CP but not Dec-TPP+, therefore preventing any adaptive signaling. Moreover, dual effects on mitochondrial bioenergetics and ROS by Mito-CP curtailed the cancer survival via Akt inhibition, AMPK-HIF-1α activation and promoted apoptosis via increased BCL2-associated X protein and poly (ADP-ribose) polymerase expression. This dual mode of action by Mito-CP provides a better explanation of the application of antioxidants with specific relevance to cancerous transformation and adaptations in the Daudi cell line.


Asunto(s)
Óxidos N-Cíclicos/farmacología , Mitocondrias/efectos de los fármacos , Compuestos Organofosforados/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Células Cultivadas , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA