Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Infect Dis ; 227(7): 864-872, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35759279

RESUMEN

BACKGROUND: The COVID-19 pandemic highlighted the need for early detection of viral infections in symptomatic and asymptomatic individuals to allow for timely clinical management and public health interventions. METHODS: Twenty healthy adults were challenged with an influenza A (H3N2) virus and prospectively monitored from 7 days before through 10 days after inoculation, using wearable electrocardiogram and physical activity sensors. This framework allowed for responses to be accurately referenced to the infection event. For each participant, we trained a semisupervised multivariable anomaly detection model on data acquired before inoculation and used it to classify the postinoculation dataset. RESULTS: Inoculation with this challenge virus was well-tolerated with an infection rate of 85%. With the model classification threshold set so that no alarms were recorded in the 170 healthy days recorded, the algorithm correctly identified 16 of 17 (94%) positive presymptomatic and asymptomatic individuals, on average 58 hours postinoculation and 23 hours before the symptom onset. CONCLUSIONS: The data processing and modeling methodology show promise for the early detection of respiratory illness. The detection algorithm is compatible with data collected from smartwatches using optical techniques but needs to be validated in large heterogeneous cohorts in normal living conditions. Clinical Trials Registration. NCT04204493.


Asunto(s)
COVID-19 , Virus de la Influenza A , Gripe Humana , Dispositivos Electrónicos Vestibles , Adulto , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Gripe Humana/diagnóstico , Pandemias , Estudios Prospectivos
2.
Artículo en Inglés | MEDLINE | ID: mdl-35181805

RESUMEN

Coronavirus infections have been known to cause disease in animals since as early as the 1920s. However, only seven coronaviruses capable of causing human disease have been identified thus far. These Human Coronaviruses (HCoVs) include the causes of the common cold, but more recent coronaviruses that have emerged (i.e. SARS-CoV, MERS-CoV and SARS-CoV-2) are associated with much greater morbidity and mortality. HCoVs have been relatively under-studied compared to other common respiratory infections, as historically they have presented with mild symptoms. This has led to a relatively limited understanding of their animal reservoirs, transmission and determinants of immune protection. To address this, human infection challenge studies with HCoVs have been performed that enable a detailed clinical and immunological analysis of the host response at specific time points under controlled conditions with standardised viral inocula. Until recently, all such human challenge studies were conducted with common cold HCoVs, with the study of SARS-CoV and MERS-CoV unacceptable due to their greater pathogenicity. However, with the emergence of SARS-CoV-2 and the COVID-19 pandemic during which severe outcomes in young healthy adults have been rare, human challenge studies with SARS-CoV-2 are now being developed. Two SARS-CoV-2 human challenge studies in the UK studying individuals with and without pre-existing immunity are underway. As well as providing a platform for testing of antivirals and vaccines, such studies will be critical for understanding the factors associated with susceptibility to SARS-CoV-2 infection and thus developing improved strategies to tackle the current as well as future HCoV pandemics. Here, we summarise the major questions about protection and pathogenesis in HCoV infection that human infection challenge studies have attempted to answer historically, as well as the knowledge gaps that aim to be addressed with contemporary models.

3.
Sci Immunol ; 9(92): eadj9285, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38335268

RESUMEN

Human infection challenge permits in-depth, early, and pre-symptomatic characterization of the immune response, enabling the identification of factors that are important for viral clearance. Here, we performed intranasal inoculation of 34 young adult, seronegative volunteers with a pre-Alpha severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain. Of these participants, 18 (53%) became infected and showed an interferon-dominated mediator response with divergent kinetics between nasal and systemic sites. Peripheral CD4+ and CD8+ T cell activation and proliferation were early and robust but showed distinct kinetic and phenotypic profiles; antigen-specific T cells were largely CD38+Ki67+ and displayed central and effector memory phenotypes. Both mucosal and systemic antibodies became detectable around day 10, but nasal antibodies plateaued after day 14 while circulating antibodies continued to rise. Intensively granular measurements in nasal mucosa and blood allowed modeling of immune responses to primary SARS-CoV-2 infection that revealed CD8+ T cell responses and early mucosal IgA responses strongly associated with viral control, indicating that these mechanisms should be targeted for transmission-reducing intervention.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Vacunación , Linfocitos T CD8-positivos , Mucosa Nasal
4.
Front Immunol ; 10: 143, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30787928

RESUMEN

The human colonic mucosa contains regulatory type 1-like (Tr1-like, i.e., IL-10-secreting and Foxp3-negative) T cells specific for the gut Clostridium Faecalibacterium prausnitzii (F. prausnitzii), which are both decreased in Crohn's disease patients. These data, together with the demonstration, in mice, that colonic regulatory T cells (Treg) induced by Clostridium bacteria are key players in colon homeostasis, support a similar role for F. prausnitzii-specific Treg in the human colon. Here we assessed the mechanisms whereby F. prausnitzii induces human colonic Treg. We demonstrated that F. prausnitzii, but not related Clostridia, skewed human dendritic cells to prime IL-10-secreting T cells. Accordingly, F. prausnitzii induced dendritic cells to express a unique array of potent Tr1/Treg polarizing molecules: IL-10, IL-27, CD39, IDO-1, and PDL-1 and, following TLR4 stimulation, inhibited their up-regulation of costimulation molecules as well as their production of pro-inflammatory cytokines IL-12 (p35 and p40) and TNFα. We further showed that these potent tolerogenic effects relied on F. prausnitzii-induced TLR2/6 triggering, JNK signaling and CD39 ectonucleotidase activity, which was induced by IDO-1 and IL-27. These data, together with the presence of F. prausnitzii-specific Tr1-like Treg in the human colon, point out to dendritic cells polarization by F. prausnitzii as the first described cellular mechanism whereby the microbiota composition may affect human colon homeostasis. Identification of F. prausnitzii-induced mediators involved in Tr1-like Treg induction by dendritic cells opens therapeutic avenues for the treatment of inflammatory bowel diseases.


Asunto(s)
Citocinas/inmunología , Células Dendríticas/inmunología , Faecalibacterium prausnitzii , Linfocitos T Reguladores/inmunología , Apirasa/inmunología , Clostridium , Colon/inmunología , Colon/microbiología , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Sistema de Señalización de MAP Quinasas , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 6/inmunología
5.
Expert Rev Endocrinol Metab ; 13(6): 317-332, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30422016

RESUMEN

INTRODUCTION: In the human organism, a constant interplay exists between the stress system [which includes the activity of the hypothalamic-pituitary-adrenal (HPA) axis] and the adipose tissue. This interplay is mediated by hormones of the HPA axis such as corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and glucocorticoids (GCs) and adipokines secreted by the adipose tissue. AREAS COVERED: In this critical review, the bi-directional interactions between HPA axis and the most studied adipokines such as leptin and adiponectin, as well as the pro-inflammatory adipocytokines tumor necrosis factor (TNF) and interleukin (IL) 6 are presented. Furthermore, these interactions are described in normalcy as well as in specific clinical paradigms of stress-related disorders such as eating disorders, hypothalamic amenorrhea, and stress-related endogenous hypercortisolism states. Wherever new therapeutic strategies emerge, they are presented accordingly. EXPERT COMMENTARY: Additional research is needed to clarify the mechanisms involved in the interplay between the HPA axis and the adipose tissue. Research should be focused, in particular, on the development of new therapeutic means targeting dysfunctional adipose tissue in stress-related situations.


Asunto(s)
Adipoquinas/fisiología , Sistema Hipotálamo-Hipofisario/fisiopatología , Sistema Hipófiso-Suprarrenal/fisiopatología , Estrés Psicológico/fisiopatología , Tejido Adiposo/fisiología , Humanos
6.
Oncoimmunology ; 5(7): e1178025, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27622030

RESUMEN

Tumor-associated macrophages (TAM) are immunosuppressive cells that can massively accumulate in the tumor microenvironment. In patients with ovarian cancer, their density is correlated with poor prognosis. Targeting mediators that control the generation or the differentiation of immunoregulatory macrophages represents a therapeutic challenge to overcome tumor-associated immunosuppression. The ectonucleotidase CD39 hydrolyzes ATP into extracellular adenosine that exhibits potent immunosuppressive properties when signaling through the A2A adenosine receptor. We report here that CD14(+) CD163(+) TAM isolated from ovarian cancer patients and macrophages generated in vitro with M-CSF, express high levels of the membrane ectonucleotidase CD39 compared to classically activated macrophages. The CD39 inhibitor POM-1 and adenosine deaminase (ADA) diminished some of the immunosuppressive functions of CD14(high) CD163(high) CD39(high) macrophages, such as IL-10 secretion. We identified the cytokine IL-27, secreted by tumor-infiltrating neutrophils, located close to infiltrating CD163(+) macrophages, as a major rheostat of CD39 expression and consequently, on the acquisition of immunoregulatory properties by macrophages. Accordingly, the depletion of IL-27 downregulated CD39 and PD-L1 expression as well as IL-10 secretion by M-CSF-macrophages. Collectively, these data suggest that CD39, drived by IL-27 and CD115 ligands in ovarian cancer, maintains the immunosuppressive phenotype of TAM. This work brings new information on the acquisition of immunosuppressive properties by tumor-infiltrating macrophages.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA