Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Psychiatry ; 18(1): 183, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29884173

RESUMEN

BACKGROUND: 3q29 deletion syndrome is caused by a recurrent hemizygous 1.6 Mb deletion on the long arm of chromosome 3. The syndrome is rare (1 in 30,000 individuals) and is associated with mild to moderate intellectual disability, increased risk for autism and anxiety, and a 40-fold increased risk for schizophrenia, along with a host of physical manifestations. However, the disorder is poorly characterized, the range of manifestations is not well described, and the underlying molecular mechanism is not understood. We designed the Emory 3q29 Project to document the range of neurodevelopmental and psychiatric manifestations associated with 3q29 deletion syndrome. We will also create a biobank of samples from our 3q29 deletion carriers for mechanistic studies, which will be a publicly-available resource for qualified investigators. The ultimate goals of our study are three-fold: first, to improve management and treatment of 3q29 deletion syndrome. Second, to uncover the molecular mechanism of the disorder. Third, to enable cross-disorder comparison with other rare genetic syndromes associated with neuropsychiatric phenotypes. METHODS: We will ascertain study subjects, age 6 and older, from our existing registry ( 3q29deletion.org ). Participants and their families will travel to Atlanta, GA for phenotypic assessments, with particular emphasis on evaluation of anxiety, cognitive ability, autism symptomatology, and risk for psychosis via prodromal symptoms and syndromes. Evaluations will be performed using standardized instruments. Structural, diffusion, and resting-state functional MRI data will be collected from eligible study participants. We will also collect blood from the 3q29 deletion carrier and participating family members, to be banked at the NIMH Repository and Genomics Resource (NRGR). DISCUSSION: The study of 3q29 deletion has the potential to transform our understanding of complex disease. Study of individuals with the deletion may provide insights into long term care and management of the disorder. Our project describes the protocol for a prospective study of the behavioral and clinical phenotype associated with 3q29 deletion syndrome. The paradigm described here could easily be adapted to study additional CNV or single gene disorders with high risk for neuropsychiatric phenotypes, and/or transferred to other study sites, providing a means for data harmonization and cross-disorder analysis.


Asunto(s)
Trastorno Autístico , Deleción Cromosómica , Trastornos de los Cromosomas , Cromosomas Humanos Par 3 , Discapacidad Intelectual , Esquizofrenia , Trastorno Autístico/diagnóstico , Trastorno Autístico/genética , Trastorno Autístico/psicología , Niño , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/psicología , Cognición , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/psicología , Femenino , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/psicología , Masculino , Fenotipo , Estudios Prospectivos , Esquizofrenia/diagnóstico , Esquizofrenia/genética , Esquizofrenia/terapia , Psicología del Esquizofrénico
2.
bioRxiv ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39005270

RESUMEN

Human-mouse chimeric brain models, generated by transplanting human induced pluripotent stem cell (hiPSC)-derived neural cells, are valuable for studying the development and function of human neural cells in vivo. Understanding glial-glial and glial-neuronal interactions is essential for unraveling the complexities of brain function and developing treatments for neurological disorders. To explore these interactions between human neural cells within an intact brain environment, we employe a co-transplantation strategy involving the engraftment of hiPSC-derived neural progenitor cells along with primitive macrophage progenitors into the neonatal mouse brain. This approach creates human-mouse chimeric brains containing human microglia, macroglia (astroglia and oligodendroglia), and neurons. Using super-resolution imaging and 3D reconstruction techniques, we examine the dynamics between human neurons and glia, unveiling human microglia engulfing immature human neurons, microglia pruning synapses of human neurons, and significant interactions between human oligodendrocytes and neurons. Single-cell RNA sequencing analysis of the chimeric brain uncovers a close recapitulation of the human glial progenitor cell population, along with a dynamic stage in astroglial development that mirrors the processes found in the human brain. Furthermore, cell-cell communication analysis highlights significant neuronal-glial and glial-glial interactions, especially the interaction between adhesion molecules neurexins and neuroligins. This innovative co-transplantation model opens up new avenues for exploring the complex pathophysiological mechanisms underlying human neurological diseases. It holds particular promise for studying disorders where glial-neuronal interactions and non-cell-autonomous effects play crucial roles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA