Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Integr Neurosci ; 23(3): 53, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38538219

RESUMEN

Carnosic acid (CA), a diterpene obtained mainly from Rosmarinus officinalis and Salvia officinalis, exerts antioxidant, anti-inflammatory, and anti-apoptotic effects in mammalian cells. At least in part, those benefits are associated with the ability that CA modulates mitochondrial physiology. CA attenuated bioenergetics collapse and redox impairments in the mitochondria obtained from brain cells exposed to several toxicants in both in vitro and in vivo experimental models. CA is a potent inducer of the major modulator of the redox biology in animal cells, the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which controls the expression of a myriad of genes whose products are involved with cytoprotection in different contexts. Moreover, CA upregulates signaling pathways related to the degradation of damaged mitochondria (mitophagy) and with the synthesis of these organelles (mitochondrial biogenesis). Thus, CA may be considered an agent that induces mitochondrial renewal, depending on the circumstances. In this review, we discuss about the mechanisms of action by which CA promotes mitochondrial protection in brain cells.


Asunto(s)
Abietanos , Antioxidantes , Mitocondrias , Animales , Antioxidantes/farmacología , Oxidación-Reducción , Mitocondrias/metabolismo , Encéfalo/metabolismo , Mamíferos/metabolismo
2.
J Transl Med ; 21(1): 568, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620891

RESUMEN

BACKGROUND: Non-alcoholic Fatty Liver Disease (NAFLD), now better known as Metabolic (Dysfunction)-Associated Fatty Liver Disease (MAFLD) and its progression to Nonalcoholic Steatohepatitis (NASH), more recently referred to as Metabolic (Dysfunction)-Associated Steatohepatitis (MASH) are the most common causes of liver failure and chronic liver damage. The new names emphasize the metabolic involvement both in relation to liver function and pathological features with extrahepatic manifestations. This study aims to explore the role of the immunometabolic enzyme ATP citrate lyase (ACLY), with a critical function in lipogenesis, carbohydrate metabolism, gene expression and inflammation. METHODS: ACLY function was investigated in TNFα-triggered human hepatocytes and in PBMC-derived macrophages from MASH patients. Evaluation of expression levels was carried out by western blotting and/or RT-qPCR. In the presence or absence of ACLY inhibitors, ROS, lipid peroxidation and GSSG oxidative stress biomarkers were quantified. Chromatin immunoprecipitation (ChIP), transient transfections, immunocytochemistry, histone acetylation quantitation were used to investigate ACLY function in gene expression reprogramming. IL-6 and IL-1ß were quantified by Lumit immunoassays. RESULTS: Mechanistically, ACLY inhibition reverted lipid accumulation and oxidative damage while reduced secretion of inflammatory cytokines in TNFα-triggered human hepatocytes. These effects impacted not only on lipid metabolism but also on other crucial features of liver function such as redox status and production of inflammatory mediators. Moreover, ACLY mRNA levels together with those of malic enzyme 1 (ME1) increased in human PBMC-derived macrophages from MASH patients when compared to age-matched healthy controls. Remarkably, a combination of hydroxycitrate (HCA), the natural ACLY inhibitor, with red wine powder (RWP) significantly lowered ACLY and ME1 mRNA amount as well as IL-6 and IL-1ß production in macrophages from subjects with MASH. CONCLUSION: Collectively, our findings for the first time highlight a broad spectrum of ACLY functions in liver as well as in the pathogenesis of MASH and its diagnostic and therapeutic potential value.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Enfermedad del Hígado Graso no Alcohólico , Humanos , ATP Citrato (pro-S)-Liasa/genética , Factor de Necrosis Tumoral alfa , Interleucina-6 , Leucocitos Mononucleares , Hepatocitos
3.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37047353

RESUMEN

Sigma-2 receptor (S2R) is a S2R ligand-binding site historically associated with reportedly 21.5 kDa proteins that have been linked to several diseases, such as cancer, Alzheimer's disease, and schizophrenia. The S2R is highly expressed in various tumors, where it correlates with the proliferative status of the malignant cells. Recently, S2R was reported to be the transmembrane protein TMEM97. Prior to that, we had been investigating the translocator protein (TSPO) as a potential 21.5 kDa S2R candidate protein with reported heme and sterol associations. Here, we investigate the contributions of TMEM97 and TSPO to S2R activity in MCF7 breast adenocarcinoma and MIA PaCa-2 (MP) pancreatic carcinoma cells. Additionally, the role of the reported S2R-interacting partner PGRMC1 was also elucidated. Proximity ligation assays and co-immunoprecipitation show a functional association between S2R and TSPO. Moreover, a close physical colocalization of TMEM97 and TSPO was found in MP cells. In MCF7 cells, co-immunoprecipitation only occurred with TMEM97 but not with PGRMC1, which was further confirmed by confocal microscopy experiments. Treatment with the TMEM97 ligand 20-(S)-hydroxycholesterol reduced co-immunoprecipitation of both TMEM97 and PGRMC1 in immune pellets of immunoprecipitated TSPO in MP cells. To the best of our knowledge, this is the first suggestion of a (functional) interaction between TSPO and TMEM97 that can be affected by S2R ligands.


Asunto(s)
Receptores sigma , Humanos , Ligandos , Unión Proteica , Receptores sigma/metabolismo , Sitios de Unión , Receptores de GABA/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Progesterona/metabolismo
4.
Int J Mol Sci ; 20(8)2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995827

RESUMEN

Mitochondrial carriers catalyse the translocation of numerous metabolites across the inner mitochondrial membrane, playing a key role in different cell functions. For this reason, mitochondrial carrier gene expression needs tight regulation. The human SLC25A13 gene, encoding for the mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), catalyses the electrogenic exchange of aspartate for glutamate plus a proton, thus taking part in many metabolic processes including the malate-aspartate shuttle. By the luciferase (LUC) activity of promoter deletion constructs we identified the putative promoter region, comprising the proximal promoter (-442 bp/-19 bp), as well as an enhancer region (-968 bp/-768 bp). Furthermore, with different approaches, such as in silico promoter analysis, gene silencing and chromatin immunoprecipitation, we identified two transcription factors responsible for SLC25A13 transcriptional regulation: FOXA2 and USF1. USF1 acts as a positive transcription factor which binds to the basal promoter thus ensuring SLC25A13 gene expression in a wide range of tissues. The role of FOXA2 is different, working as an activator in hepatic cells. As a tumour suppressor, FOXA2 could be responsible for SLC25A13 high expression levels in liver and its downregulation in hepatocellular carcinoma (HCC).


Asunto(s)
Factor Nuclear 3-beta del Hepatocito/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Activación Transcripcional , Factores Estimuladores hacia 5'/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Regiones Promotoras Genéticas
5.
Life (Basel) ; 13(8)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37629594

RESUMEN

Recently, microalgae are arousing considerable interest as a source of countless molecules with potential impacts in the nutraceutical and pharmaceutical fields. Haematococcus pluvialis, also named Haematococcus lacustris, is the largest producer of astaxanthin, a carotenoid exhibiting powerful health effects, including anti-lipogenic and anti-diabetic activities. This study was carried out to investigate the properties of two selected strains of H. pluvialis (FBR1 and FBR2) on lipid metabolism, lipolysis and adipogenesis using an in vitro obesity model. FBR1 and FBR2 showed no antiproliferative effect at the lowest concentration in 3T3-L1 adipocytes. Treatment with FBR2 extract reduced lipid deposition, detected via Oil Red O staining and the immunocontent of the adipogenic proteins PPARγ, ACLY and AMPK was revealed using Western blot analysis. Extracts from both strains induced lipolysis in vitro and reduced the secretion of interleukin-6 and tumor necrosis factor-α. Moreover, the FBR1 and FBR2 extracts improved mitochondrial function, reducing the levels of mitochondrial superoxide anion radical and increasing mitochondrial mass compared to untreated adipocytes. These findings suggest that FBR2 extract, more so than FBR1, may represent a promising strategy in overweight and obesity prevention and treatment.

6.
Pharmaceutics ; 15(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37242782

RESUMEN

Several studies have demonstrated the effectiveness of plant extracts against various diseases, especially skin disorders; namely, they exhibit overall protective effects. The Pistachio (Pistacia vera L.) is known for having bioactive compounds that can effectively contribute to a person's healthy status. However, these benefits may be limited by the toxicity and low bioavailability often inherent in bioactive compounds. To overcome these problems, delivery systems, such as phospholipid vesicles, can be employed. In this study, an essential oil and a hydrolate were produced from P. vera stalks, which are usually discarded as waste. The extracts were characterized by liquid and gas chromatography coupled with mass spectrometry and formulated in phospholipid vesicles intended for skin application. Liposomes and transfersomes showed small size (<100 nm), negative charge (approximately -15 mV), and a longer storage stability for the latter. The entrapment efficiency was determined via the quantification of the major compounds identified in the extracts and was >80%. The immune-modulating activity of the extracts was assayed in macrophage cell cultures. Most interestingly, the formulation in transfersomes abolished the cytotoxicity of the essential oil while increasing its ability to inhibit inflammatory mediators via the immunometabolic citrate pathway.

7.
Foods ; 11(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35564065

RESUMEN

Nowadays, the interest toward products containing probiotics is growing due to their potential health benefits to the host and the research is focusing on search of new probiotic microorganisms. The present work was focused on the characterization of indigenous Saccharomyces cerevisiae strains, isolated from different food matrixes, with the goal to select strains with probiotic or health-beneficial potential. A preliminary screening performed on fifty S. cerevisiae indigenous strains, in comparison to a commercial probiotic strain, allowed to individuate the most suitable ones for potential probiotic aptitude. Fourteen selected strains were tested for survival ability in the gastrointestinal tract and finally, the strains characterized for the most important probiotic features were analyzed for health-beneficial traits, such as the content of glucan, antioxidant and potential anti-inflammatory activities. Three strains, 4LBI-3, LL-1, TA4-10, showing better attributes compared to the commercial probiotic S.cerevisiae var. boulardii strain, were characterized by interesting health-beneficial traits, such as high content of glucan, high antioxidant and potential anti-inflammatory activities. Our results suggest that some of the tested S. cerevisiae strains have potential as probiotics and candidate for different applications, such as dietary supplements, and starter for the production of functional foods or as probiotic to be used therapeutically.

8.
Biomedicines ; 10(12)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36551876

RESUMEN

Hepatocellular carcinoma (HCC) is the most common type of liver cancer and the fourth cause of cancer-related deaths worldwide. Presently, a few drugs are available for HCC treatment and prevention, including both natural and synthetic compounds. In this study, a new chalcone, (E)-1-(2,4,6-triethoxyphenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (ETTC), was synthesized and its effects and mechanisms of action over human hepatoma cells were investigated. Cytotoxic activity was revealed in HCC cells, while no effects were observed in normal hepatocytes. In HCC cells, ETTC caused subG1 cell cycle arrest and apoptosis, characterized by nuclear fragmentation. The activation of caspases 3/7 and 9, the increase in pro-apoptotic BAX, and the decrease in anti-apoptotic BCL-2 suggest the activation of the intrinsic pathway of apoptosis. ETTC mitochondrial targeting is confirmed by the reduction in mitochondrial membrane potential and Complex I activity together with levels of superoxide anion increasing. Our outcomes prove the potential mitochondria-mediated antitumor effect of newly synthesized chalcone ETTC in HCC.

9.
Antioxidants (Basel) ; 10(11)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34829554

RESUMEN

The peppers of the Capsicum species are exploited in many fields, as flavoring agents in food industry, or as decorative and therapeutic plants. Peppers show a diversified phytochemical content responsible for different biological activities. Synergic activity exerted by high levels of antioxidant compounds is responsible for their important anti-inflammatory property. A methanolic extract was obtained from a new pepper genotype and tested for anti-inflammatory activity. The extract was incorporated into phospholipid vesicles to increase the bioavailability of its bioactive components. Two types of phospholipid vesicles were produced, conventional liposomes and Penetration Enhancer containing Vesicles (PEVs). They were tested in human monoblastic leukemia U937 cell line, showing no cytotoxic effect. The intracellular reactive oxygen species (ROS) and nitric oxide (NO) levels were measured to value the in vitro efficacy of the vesicles in regulating inflammatory responses. Liposomal incorporation significantly reduced ROS levels in extract-treated LPS-activated cells. Furthermore, LC-MS/MS analyses demonstrated that liposomes facilitated the transport of the extract components across the cell membrane and their accumulation into the cytoplasm.

10.
Biomedicines ; 9(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34829892

RESUMEN

Metabolic reprogramming is a hallmark of cancer cells required to ensure high energy needs and the maintenance of redox balance. A relevant metabolic change of cancer cell bioenergetics is the increase in glutamine metabolism. Hepatocellular carcinoma (HCC), one of the most lethal cancer and which requires the continuous development of new therapeutic strategies, shows an up-regulation of human glutamate dehydrogenase 1 (hGDH1). GDH1 function may be relevant in cancer cells (or HCC) to drive the glutamine catabolism from L-glutamate towards the synthesis of α-ketoglutarate (α-KG), thus supplying key tricarboxylic acid cycle (TCA cycle) metabolites. Here, the effects of hGLUD1 gene silencing (siGLUD1) and GDH1 inhibition were evaluated. Our results demonstrate that siGLUD1 in HepG2 cells induces a significant reduction in cell proliferation (58.8% ± 10.63%), a decrease in BCL2 expression levels, mitochondrial mass (75% ± 5.89%), mitochondrial membrane potential (30% ± 7.06%), and a significant increase in mitochondrial superoxide anion (25% ± 6.55%) compared to control/untreated cells. The inhibition strategy leads us to identify two possible inhibitors of hGDH1: quercetin and Permethylated Anigopreissin A (PAA). These findings suggest that hGDH1 could be a potential candidate target to impair the metabolic reprogramming of HCC cells.

11.
Nanomaterials (Basel) ; 10(10)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096779

RESUMEN

Hydroxycitrate (HCA), a main organic acid component of the fruit rind of Garcinia cambogia, is a natural citrate analog that can inhibit the ATP citrate lyase (ACLY) enzyme with a consequent reduction of inflammatory mediators (i.e., nitric oxide (NO), reactive oxygen species (ROS), and prostaglandin E2 (PGE2)) levels. Therefore, HCA has been proposed as a novel means to prevent, treat, and ameliorate conditions involving inflammation. However, HCA presents a low membrane permeability, and a large quantity is required to have a biological effect. To overcome this problem, HCA was formulated in liposomes in this work, and the enhancement of HCA cell availability along with the reduction in the amount required to downregulate NO, ROS, and PGE2 in macrophages were assessed. The liposomes were small in size (~60 nm), monodispersed, negatively charged (-50 mV), and stable on storage. The in vitro results showed that the liposomal encapsulation increased by approximately 4 times the intracellular accumulation of HCA in macrophages, and reduced by 10 times the amount of HCA required to abolish LPS-induced NO, ROS, and PGE2 increase. This suggests that liposomal HCA can be exploited to target the citrate pathway involved in inflammatory processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA