Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Clin Pharmacol ; 79(6): 723-751, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37081137

RESUMEN

INTRODUCTION: Drug repositioning is a strategy to identify a new therapeutic indication for molecules that have been approved for other conditions, aiming to speed up the traditional drug development process and reduce its costs. The high prevalence and incidence of coronavirus disease 2019 (COVID-19) underline the importance of searching for a safe and effective treatment for the disease, and drug repositioning is the most rational strategy to achieve this goal in a short period of time. Another advantage of repositioning is the fact that these compounds already have established synthetic routes, which facilitates their production at the industrial level. However, the hope for treatment cannot allow the indiscriminate use of medicines without a scientific basis. RESULTS: The main small molecules in clinical trials being studied to be potentially repositioned to treat COVID-19 are chloroquine, hydroxychloroquine, ivermectin, favipiravir, colchicine, remdesivir, dexamethasone, nitazoxanide, azithromycin, camostat, methylprednisolone, and baricitinib. In the context of clinical tests, in general, they were carried out under the supervision of large consortiums with a methodology based on and recognized in the scientific community, factors that ensure the reliability of the data collected. From the synthetic perspective, compounds with less structural complexity have more simplified synthetic routes. Stereochemical complexity still represents the major challenge in the preparation of dexamethasone, ivermectin, and azithromycin, for instance. CONCLUSION: Remdesivir and baricitinib were approved for the treatment of hospitalized patients with severe COVID-19. Dexamethasone and methylprednisolone should be used with caution. Hydroxychloroquine, chloroquine, ivermectin, and azithromycin are ineffective for the treatment of the disease, and the other compounds presented uncertain results. Preclinical and clinical studies should not be analyzed alone, and their methodology's accuracy should also be considered. Regulatory agencies are responsible for analyzing the efficacy and safety of a treatment and must be respected as the competent authorities for this decision, avoiding the indiscriminate use of medicines.


Asunto(s)
COVID-19 , Humanos , Reposicionamiento de Medicamentos/métodos , SARS-CoV-2 , Hidroxicloroquina/uso terapéutico , Pandemias , Azitromicina , Ivermectina/uso terapéutico , Reproducibilidad de los Resultados , Cloroquina/uso terapéutico , Dexametasona/uso terapéutico , Metilprednisolona , Antivirales/uso terapéutico
2.
Bioorg Med Chem ; 35: 116085, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33668008

RESUMEN

Histone deacetylases (HDACs) are a family of enzymes that modulate the acetylation status histones and non-histone proteins. Histone deacetylase inhibitors (HDACis) have emerged as an alternative therapeutic approach for the treatment of several malignancies. Herein, a series of urea-based cinnamyl hydroxamate derivatives is presented as potential anticancer HDACis. In addition, structure-activity relationship (SAR) studies have been performed in order to verify the influence of the linker on the biological profile of the compounds. All tested compounds demonstrated significant antiproliferative effects against solid and hematological human tumor cell lines. Among them, 11b exhibited nanomolar potency against hematological tumor cells including Jurkat and Namalwa, with IC50 values of 40 and 200 nM, respectively. Cellular and molecular proliferation studies, in presence of compounds 11a-d, showed significant cell growth arrest, apoptosis induction, and up to 43-fold selective cytotoxicity for leukemia cells versus non-tumorigenic cells. Moreover, compounds 11a-d increased acetylated α-tubulin expression levels, which is phenotypically consistent with HDAC inhibition, and indirectly induced DNA damage. In vitro enzymatic assays performed for 11b revealed a potent HDAC6 inhibitory activity (IC50: 8.1 nM) and 402-fold selectivity over HDAC1. Regarding SAR analysis, the distance between the hydroxamate moiety and the aromatic ring as well as the presence of the double bond in the cinnamyl linker were the most relevant chemical feature for the antiproliferative activity of the series. Molecular modeling studies suggest that cinnamyl hydroxamate is the best moiety of the series for binding HDAC6 catalytic pocket whereas exploration of Ser568 by the urea connecting unity (CU) might be related with the selectivity observed for the cinnamyl derivatives. In summary, cinnamyl hydroxamate derived compounds with HDAC6 inhibitory activity exhibited cell growth arrest and increased apoptosis, as well as selectivity to acute lymphoblastic leukemia cells. This study explores interesting compounds to fight against neoplastic hematological cells.


Asunto(s)
Antineoplásicos/farmacología , Cinamatos/farmacología , Histona Desacetilasa 1/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cinamatos/síntesis química , Cinamatos/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Histona Desacetilasa 1/metabolismo , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/química , Estructura Molecular , Relación Estructura-Actividad
3.
Molecules ; 26(6)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802144

RESUMEN

Piper, Capsicum, and Pimenta are the main genera of peppers consumed worldwide. The traditional use of peppers by either ancient civilizations or modern societies has raised interest in their biological applications, including cytotoxic and antiproliferative effects. Cellular responses upon treatment with isolated pepper-derived compounds involve mechanisms of cell death, especially through proapoptotic stimuli in tumorigenic cells. In this review, we highlight naturally occurring secondary metabolites of peppers with cytotoxic effects on cancer cell lines. Available mechanisms of cell death, as well as the development of analogues, are also discussed.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Capsicum/metabolismo , Pimenta/metabolismo , Piper/metabolismo , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Capsaicina/química , Capsaicina/farmacología , Capsicum/química , Capsicum/efectos de los fármacos , Humanos , Pimenta/química , Pimenta/efectos de los fármacos , Piper/química , Piper/efectos de los fármacos , Verduras/química
4.
Bioorg Med Chem ; 28(15): 115600, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32631571

RESUMEN

The enzyme dihydrofolate reductase from M.tuberculosis (MtDHFR) has a high unexploited potential to be a target for new drugs against tuberculosis (TB), due to its importance for pathogen survival. Preliminary studies have obtained fragment-like molecules with low affinity to MtDHFR which can potentially become lead compounds. Taking this into account, the fragment MB872 was used as a prototype for analogue development by bioisosterism/retro-bioisosterism, which resulted in 20 new substituted 3-benzoic acid derivatives. Compounds were active against MtDHFR, with IC50 values ranging from 7 to 40 µM, where compound 4e not only had the best inhibitory activity (IC50 = 7 µM), but also was 71-fold more active than the original fragment MB872. The 4e inhibition kinetics indicated an uncompetitive mechanism, which was supported by molecular modeling which suggested that the compounds can access an independent backpocket from the substrate and competitive inhibitors. Thus, based on these results, substituted 3-benzoic acid derivatives have strong potential to be developed as novel MtDHFR inhibitors and also anti-TB agents.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Benzoatos/farmacología , Antagonistas del Ácido Fólico/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tetrahidrofolato Deshidrogenasa/metabolismo , Antituberculosos/síntesis química , Antituberculosos/metabolismo , Proteínas Bacterianas/química , Benzoatos/síntesis química , Benzoatos/metabolismo , Dominio Catalítico , Diseño de Fármacos , Antagonistas del Ácido Fólico/síntesis química , Antagonistas del Ácido Fólico/metabolismo , Cinética , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/química
5.
Bioorg Med Chem ; 27(13): 2893-2904, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31104785

RESUMEN

The use of molecules inspired by natural scaffolds has proven to be a very promising and efficient method of drug discovery. In this work, capsaicin, a natural product from Capsicum peppers with antitumor properties, was used as a prototype to obtain urea and thiourea analogues. Among the most promising compounds, the thiourea compound 6g exhibited significant cytotoxic activity against human melanoma A2058 cells that was twice as high as that of capsaicin. Compound 6g induced significant and dose-dependent G0/G1 cell cycle arrest in A2058 cells triggering cell death by apoptosis. Our results suggest that 6g modulates the RAF/MEK/ERK pathway, inducing important morphological changes, such as formation of apoptotic bodies and increased levels of cleaved caspase-3. Compared to capsaicin, 6g had no significant TRPV1/6 agonist effect or irritant effects on mice. Molecular modeling studies corroborate the biological findings and suggest that 6g, besides being a more reactive molecule towards its target, may also present a better pharmacokinetic profile than capsaicin. Inverse virtual screening strategy found MEK1 as a possible biological target for 6g. Consistent with these findings, our observations suggested that 6g could be developed as a potential anticancer agent.


Asunto(s)
Capsaicina/análogos & derivados , Melanoma/tratamiento farmacológico , Apoptosis , Humanos , Modelos Moleculares
6.
Arch Pharm (Weinheim) ; 350(11)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28940630

RESUMEN

Alzheimer's disease (AD) is the most common type of dementia and related to the degeneration of hippocampal cholinergic neurons, which dramatically affects cognitive ability. Acetylcholinesterase (AChE) inhibitors are employed as drugs for AD therapy. Three series of sulfonylhydrazone compounds were designed, and their ability to inhibit AChE was evaluated. Fifteen compounds were synthesized and twelve of them had IC50 values of 0.64-51.09 µM. The preliminary structure-activity relationships indicated that the methylcatechol moiety and arylsulfonyl substituents generated better compounds than both the benzodioxole and alkylsulfonyl chains. Molecular dynamics studies of compound 6d showed that the interaction with the peripheral binding site of AChE was similar to donepezil, which may explain its low IC50 (0.64 µM). Furthermore, the drug-likeness of 6d suggests that the compound may have appropriate oral absorption and brain penetration. Compound 6d also presented antiradical activity and was not cytotoxic to LL24 cells, suggesting that this compound might be considered safe. Our findings indicate that arylsulfonylhydrazones may be a promising scaffold for the design of new drug candidates for the treatment of AD.


Asunto(s)
Acetilcolinesterasa/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Hidrazonas/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/enzimología , Sitios de Unión , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Donepezilo , Diseño de Fármacos , Humanos , Hidrazonas/síntesis química , Hidrazonas/química , Indanos/farmacología , Concentración 50 Inhibidora , Modelos Moleculares , Piperidinas/farmacología , Relación Estructura-Actividad
7.
Bioorg Med Chem ; 24(19): 4600-4610, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27561984

RESUMEN

A series of novel chelerythrine analogues was designed and synthesized. Antitumor activity was evaluated against A549, NCI-H1299, NCI-H292, and NCI-H460 non-small-cell lung cancer (NSCLC) cell lines in vitro. The selectivity of the most active analogues and chelerythrine was also evaluated, and we compared their cytotoxicity in NSCLC cells and non-tumorigenic cell lines, including human umbilical vein endothelial cells (HUVECs) and LL24 human lung fibroblasts. In silico studies were performed to establish structure-activity relationships between chelerythrine and the analogues. The results showed that analogue compound 3f induced significant dose-dependent G0/G1 cell cycle arrest in A549 and NCI-H1299 cells. Theoretical studies indicated that the molecular arrangement and electron characteristics of compound 3f were closely related to the profile of chelerythrine, supporting its activity. The present study presents a new and simplified chelerythrinoid scaffold with enhanced selectivity against NSCLC tumor cells for further optimization.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Benzofenantridinas/química , Benzofenantridinas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Neoplasias Pulmonares/patología , Modelos Moleculares , Relación Estructura-Actividad
8.
Tumour Biol ; 36(9): 7251-67, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25894379

RESUMEN

Capsaicin, the primary pungent component of the chili pepper, has antitumor activity. Herein, we describe the activity of RPF151, an alkyl sulfonamide analogue of capsaicin, against MDA-MB-231 breast cancer cells. RPF151 was synthetized, and molecular modeling was used to compare capsaicin and RPF151. Cytotoxicity of RPF151 on MDA-MB-231 was also evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5diphenyltetrazolium bromide (MTT) assay. Cell cycle analysis, by flow cytometry, and Western blot analysis of cycle-related proteins were used to evaluate the antiproliferative mechanisms. Apoptosis was evaluated by phosphatidyl-serine externalization, cleavage of Ac-YVAD-AMC, and Bcl-2 expression. The production of reactive oxygen species was evaluated by flow cytometry. RPF151 in vivo antitumor effects were investigated in murine MDA-MB-231 model. This study shows that RPF151 downregulated p21 and cyclins A, D1, and D3, leading to S-phase arrest and apoptosis. Although RPF151 has induced the activation of TRPV-1 and TRAIL-R1/DR4 and TRAIL-2/DR5 on the surface of MDA-MB-231 cells, its in vivo antitumor activity was TRPV-1-independent, thus suggesting that RPF151 should not have the same pungency-based limitation of capsaicin. In silico analysis corroborated the biological findings, showing that RPF151 has physicochemical improvements over capsaicin. Overall, the activity of RPF151 against MDA-MB-231 and its lower pungency suggest that it may have a relevant role in cancer therapy.


Asunto(s)
Neoplasias de la Mama/genética , Capsaicina/administración & dosificación , Proliferación Celular/efectos de los fármacos , Proteínas de Neoplasias/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Capsaicina/análogos & derivados , Capsaicina/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Modelos Moleculares , Proteínas de Neoplasias/genética , Unión Proteica , Ensayos Antitumor por Modelo de Xenoinjerto
9.
J Pharm Pharm Sci ; 17(4): 532-40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25579432

RESUMEN

PURPOSE: Prodrug design is a strategy that can be used to adjust physicochemical properties of drugs in order to overcome pharmacokinetic problems, such as poor oral bioavailability. However, Lipinski´s and Veber´s rules predict whether compounds will have absorption problems even before the design of prodrugs. In this context, our goal was to evaluate the molecular properties which most influenced the absorption process of prodrugs compared to its precursor through exploratory data analysis approach. METHODS: A variety of prodrugs and respective precursors were randomly selected and classified by its percentage of human intestinal absorption. Subsequently, different molecular properties were calculated and hierarchical cluster analysis (HCA) and principal components analysis (PCA) were carried out. RESULTS: According to the findings, antiviral, anti-hypertensive, and antibiotic prodrugs exhibited higher absorption levels than their respective precursors. Also, some relevant descriptors (molecular weight, MW, routable bonds, rot_bonds, hydrogen bond acceptors, HBA_count and polar surface area, PSA), which are included in Lipinski´s and Veber´s rules, influenced the separation process between prodrugs and drugs. Furthermore, other molecular properties, such as polarizability (α) and molar refractivity (MR), were pointed out. CONCLUSION: Lipinski´s and Veber´s rules proved to be important to design an orally administered drug but other descriptors should be considered by medicinal chemists in the prodrug designing process.


Asunto(s)
Diseño de Fármacos , Absorción Intestinal , Profármacos/farmacocinética , Administración Oral , Antibacterianos/administración & dosificación , Antibacterianos/química , Antibacterianos/farmacocinética , Antihipertensivos/administración & dosificación , Antihipertensivos/química , Antihipertensivos/farmacocinética , Antivirales/administración & dosificación , Antivirales/química , Antivirales/farmacocinética , Disponibilidad Biológica , Humanos , Profármacos/administración & dosificación , Profármacos/química , Relación Estructura-Actividad
10.
Arch Pharm (Weinheim) ; 347(12): 885-95, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25283529

RESUMEN

A novel class of benzo[d][1,3]dioxol-5-ylmethyl alkyl/aryl amide and ester analogues of capsaicin were designed, synthesized, and evaluated for their cytotoxic activity against human and murine cancer cell lines (B16F10, SK-MEL-28, NCI-H1299, NCI-H460, SK-BR-3, and MDA-MB-231) and human lung fibroblasts (MRC-5). Three compounds (5f, 6c, and 6e) selectively inhibited the growth of aggressive cancer cells in the micromolar (µM) range. Furthermore, an exploratory data analysis pointed at the topological and electronic molecular properties as responsible for the discrimination process regarding the set of investigated compounds. The findings suggest that the applied designing strategy, besides providing more potent analogues, indicates the aryl amides and esters as well as the alkyl esters as interesting scaffolds to design and develop novel anticancer agents.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Capsaicina/síntesis química , Capsaicina/farmacología , Diseño Asistido por Computadora , Diseño de Fármacos , Simulación de Dinámica Molecular , Animales , Capsaicina/análogos & derivados , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Análisis por Conglomerados , Humanos , Concentración 50 Inhibidora , Ratones , Estructura Molecular , Análisis de Componente Principal , Relación Estructura-Actividad
11.
Curr Med Chem ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39229987

RESUMEN

Capsaicin analogs, whether sourced from natural origins or synthesized de novo, have garnered significant attention across diverse scientific disciplines. This comprehensive investigation explores the expansive domain of medicinal chemistry and pharmacology, focusing on capsaicin and its analogs. Notably, these analogs exhibit a wideranging pharmacological spectrum, with a particular emphasis on their potent antitumor properties. Researchers frequently explore structural modifications, particularly in region C, consistently enhancing their pharmacological activities. A highlighted finding is that analogs with alterations in both regions A and C manifest a diverse array of effects, spanning from anti-obesity to protection against ischemia. They also demonstrate anti- Alzheimer's, anti-fibrotic, anti-inflammatory, anti-diabetic, antimalarial, and anti-epileptic properties. This underscores the potential of structural adaptations in these regions, expanding the therapeutic applications of capsaicin-like compounds. Additionally, manipulations in regions B and C result in compounds that possess antioxidant and anti-obesity properties, providing valuable insights for the development of novel compounds. The therapeutic potential of capsaicin analogs opens innovative avenues for drug design and development, promising to address a broad spectrum of diseases and enhance global quality of life. Moreover, this article meticulously examines various synthetic methodologies for synthesizing capsaicin analogs, complementing the main review. These methodologies distinguish themselves through their simplicity, mild reaction conditions, and reliance on readily available commercial reagents. The accessible synthesis pathways enable researchers from diverse backgrounds to explore these compounds, fostering investigations and potential therapeutic applications.

12.
Eur J Med Chem ; 263: 115935, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37989057

RESUMEN

A series of hybrid inhibitors, combining pharmacophores of known kinase inhibitors bearing anilino-purines (ruxolitinib, ibrutinib) and benzohydroxamate HDAC inhibitors (nexturastat A), were generated in the present study. The compounds have been synthesized and tested against solid and hematological tumor cell lines. Compounds 4d-f were the most promising in cytotoxicity assays (IC50 ≤ 50 nM) vs. hematological cells and displayed moderate activity in solid tumor models (EC50 = 9.3-21.7 µM). Compound 4d potently inhibited multiple kinase targets of interest for anticancer effects, including JAK2, JAK3, HDAC1, and HDAC6. Molecular dynamics simulations showed that 4d has stable interactions with HDAC and members of the JAK family, with differences in the hinge binding energy conferring selectivity for JAK3 and JAK2 over JAK1. The kinase inhibition profile of compounds 4d-f allows selective cytotoxicity, with minimal effects on non-tumorigenic cells. Moreover, these compounds have favorable pharmacokinetic profiles, with high stability in human liver microsomes (e.g., see t1/2: >120 min for 4f), low intrinsic clearance, and lack of significant inhibition of four major CYP450 isoforms.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Quinasas Janus , Purinas/farmacología , Línea Celular Tumoral , Proliferación Celular
13.
Toxicol Appl Pharmacol ; 266(3): 385-98, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23238560

RESUMEN

Breast cancer is the world's leading cause of death among women. This situation imposes an urgent development of more selective and less toxic agents. The use of natural molecular fingerprints as sources for new bioactive chemical entities has proven to be a quite promising and efficient method. Capsaicin, which is the primary pungent compound in red peppers, was reported to selectively inhibit the growth of a variety tumor cell lines. Here, we report for the first time a novel synthetic capsaicin-like analogue, RPF101, which presents a high antitumor activity on MCF-7 cell line, inducing arrest of the cell cycle at the G2/M phase through a disruption of the microtubule network. Furthermore, it causes cellular morphologic changes characteristic of apoptosis and a decrease of Δψm. Molecular modeling studies corroborated the biological findings and suggested that RPF101, besides being a more reactive molecule towards its target, may also present a better pharmacokinetic profile than capsaicin. All these findings support the fact that RPF101 is a promising anticancer agent.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Capsaicina/análogos & derivados , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Apoptosis/fisiología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Capsaicina/síntesis química , Capsaicina/química , Capsaicina/farmacología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Fragmentación del ADN , Femenino , Citometría de Flujo , Puntos de Control de la Fase G2 del Ciclo Celular/fisiología , Humanos , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Células MCF-7 , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Microscopía Confocal , Microtúbulos/metabolismo , Modelos Moleculares
14.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 3): o332, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23476527

RESUMEN

In the title compound, C16H15NO3, the five-membered 1,3-dioxole ring is in an envelope conformation with the methyl-ene C atom as the flap atom [lying 0.202 (3) Šout of the plane formed by the other four atoms]. The benzene ring makes a dihedral angle of 84.65 (4)° with the best least-squares plane through the 1,3-benzodioxole fused-ring system, which substitutes the 2-methoxyphenol moiety in capsaicin. In the crystal, mol-ecules are connected into a zigzag supra-molecular chain along the c-axis direction by N-H⋯O hydrogen bonds. These chains are connected into a layer in the ac plane by C-H⋯π inter-actions.

15.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 11): o1700, 2013 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-24454126

RESUMEN

The title compound, C14H13NO4S, an analogue of capsaicin, differs from the latter by having a 1,3-benzodioxole ring rather than a 2-meth-oxy-phenol moiety, and having a benzene-sulfonamide group instead of an aliphatic amide chain. The five-membered ring is in an envelope conformation with the methyl-ene C atom lying 0.221 (6) Šout of the plane formed by the other four atoms. The dihedral angle between the phenyl ring and the mean plane of the 1,3-benzodioxole fused-ring system is 84.65 (4)°. In the crystal, mol-ecules aggregate into supra-molecular layers in the ac plane through C-H⋯O, N-H⋯O and C-H⋯π inter-actions.

16.
Mini Rev Med Chem ; 23(17): 1711-1732, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36744693

RESUMEN

The folate metabolic cycle is an important biochemical process for the maintenance of cellular homeostasis, and is a widely studied pathway of cellular replication control in all organisms. In microorganisms such as M. tuberculosis (Mtb), for instance, dihydrofolate reductase (MtDHFR) is the enzyme commonly explored as a molecular target for the development of new antibiotics. In the same way, dihydropteroate synthase (MtDHPS) was studied extensively until the first multidrug-resistant strains of mycobacteria that could not be killed by sulfonamides were found. However, the other enzymes belonging to the metabolic cycle, until recently less explored, have drawn attention as potential molecular targets for obtaining new antituberculosis agents. Recent structural determinations and mechanism of action studies of Mtb flavin-dependent thymidylate synthase (MtFDTS) and MtRv2671, enzymes that acts on alternative metabolic pathways within the folate cycle, have greatly expanded the scope of potential targets that can be screened in drug design process. Despite the crystallographic elucidation of most cycle proteins, some enzymes, such as dihydrofolate synthase (MtDHFS) and serine hydroxylmethyltransferase (MtSHMT), remain underexplored. In this review, we highlight recent efforts towards the inhibitor design to achieve innovative antituberculosis agents and a brief history of all enzymes present in the folate metabolic cycle. In the final section of this work, we have presented the main synthetic strategies used to obtain the most promising inhibitors.


Asunto(s)
Antagonistas del Ácido Fólico , Mycobacterium tuberculosis , Antituberculosos/farmacología , Antituberculosos/química , Antagonistas del Ácido Fólico/farmacología , Ácido Fólico/química , Ácido Fólico/metabolismo , Mycobacterium tuberculosis/metabolismo
17.
Sci Rep ; 13(1): 21006, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030668

RESUMEN

We report a series of 1,3-diphenylureido hydroxamate HDAC inhibitors evaluated against sensitive and drug-resistant P. falciparum strains. Compounds 8a-d show potent antiplasmodial activity, indicating that a phenyl spacer allows improved potency relative to cinnamyl and di-hydrocinnamyl linkers. In vitro, mechanistic studies demonstrated target activity for PfHDAC1 on a recombinant level, which agreed with cell quantification of the acetylated histone levels. Compounds 6c, 7c, and 8c, identified as the most active in phenotypic assays and PfHDAC1 enzymatic inhibition. Compound 8c stands out as a remarkable inhibitor, displaying an impressive 85% inhibition of PfHDAC1, with an IC50 value of 0.74 µM in the phenotypic screening on Pf3D7 and 0.8 µM against multidrug-resistant PfDd2 parasites. Despite its potent inhibition of PfHDAC1, 8c remains the least active on human HDAC1, displaying remarkable selectivity. In silico studies suggest that the phenyl linker has an ideal length in the series for permitting effective interactions of the hydroxamate with PfHDAC1 and that this compound series could bind as well as in HsHDAC1. Taken together, these results highlight the potential of diphenylurea hydroxamates as a privileged scaffold for the generation of potent antimalarial HDAC inhibitors with improved selectivity over human HDACs.


Asunto(s)
Antimaláricos , Antagonistas del Ácido Fólico , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Antimaláricos/farmacología , Ácidos Hidroxámicos/farmacología , Antagonistas del Ácido Fólico/farmacología , Relación Estructura-Actividad , Histona Desacetilasa 1
18.
Arch Pharm (Weinheim) ; 345(12): 934-44, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22996811

RESUMEN

In this paper, the isolation of dillapiole (1) from Piper aduncum was reported as well as the semi-synthesis of two phenylpropanoid derivatives [di-hydrodillapiole (2), isodillapiole (3)], via reduction and isomerization reactions. Also, the compounds' molecular properties (structural, electronic, hydrophobic, and steric) were calculated and investigated to establish some preliminary structure-activity relationships (SAR). Compounds were evaluated for in vitro antileishmanial activity and cytotoxic effects on fibroblast cells. Compound 1 presented inhibitory activity against Leishmania amazonensis (IC(50) = 69.3 µM) and Leishmania brasiliensis (IC(50) = 59.4 µM) and induced cytotoxic effects on fibroblast cells mainly in high concentrations. Compounds 2 (IC(50) = 99.9 µM for L. amazonensis and IC(50) = 90.5 µM for L. braziliensis) and 3 (IC(50) = 122.9 µM for L. amazonensis and IC(50) = 109.8 µM for L. brasiliensis) were less active than dillapiole (1). Regarding the molecular properties, the conformational arrangement of the side chain, electronic features, and the hydrophilic/hydrophobic balance seem to be relevant for explaining the antileishmanial activity of dillapiole and its analogues.


Asunto(s)
Compuestos Alílicos/síntesis química , Dioxoles/síntesis química , Descubrimiento de Drogas , Leishmania/efectos de los fármacos , Tripanocidas/síntesis química , Células 3T3 , Compuestos Alílicos/efectos adversos , Compuestos Alílicos/química , Compuestos Alílicos/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Dioxoles/efectos adversos , Dioxoles/química , Dioxoles/farmacología , Relación Dosis-Respuesta a Droga , Isomerismo , Leishmania/crecimiento & desarrollo , Ratones , Modelos Moleculares , Estructura Molecular , Piper/química , Hojas de la Planta/química , Relación Estructura-Actividad , Tripanocidas/efectos adversos , Tripanocidas/química , Tripanocidas/farmacología
19.
Future Med Chem ; 14(10): 745-766, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35543381

RESUMEN

Cancer is the second most common cause of death worldwide. It can easily acquire resistance to treatments, demanding new therapeutic strategies, such as simultaneous inhibition of kinase and HDAC enzymes with hybrid inhibitors. Different approaches to this have varied according to their targets, with a few common trends, such as the usage of heterocycle scaffolds for kinase interaction, especially pyrimidine and quinazolines, and hydroxamic acids and benzamides for HDAC inhibition. Besides the hybrid compounds developed focusing on the inhibition tyrosine kinase and receptor tyrosine kinase, many advances have occurred in the development of serine-threonine kinase/HDAC and lipid kinase/HDAC novel compounds. Here, the latest strategies employed in this research area will be reviewed, alongside trends in inhibitor design, and observed gaps will be punctuated.


Asunto(s)
Antineoplásicos , Inhibidores de Histona Desacetilasas , Antineoplásicos/farmacología , Línea Celular Tumoral , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Ácidos Hidroxámicos/farmacología , Proteínas Tirosina Quinasas , Quinazolinas/farmacología
20.
Pharm Biol ; 49(11): 1173-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22014265

RESUMEN

CONTEXT: Piper aduncum L. (Piperaceae) produces an essential oil (dillapiole) with great exploitative potential and it has proven effects against traditional cultures of phytopathogens, such as fungi, bacteria and mollusks, as well as analgesic action with low levels of toxicity. OBJECTIVE: This study investigated the in vivo anti-inflammatory activity of dillapiole. Furthermore, in order to elucidate its structure-anti-inflammatory activity relationship (SAR), semisynthetic analogues were proposed by using the molecular simplification strategy. MATERIALS AND METHODS: Dillapiole and safrole were isolated and purified using column chromatography. The semisynthetic analogues were obtained by using simple organic reactions, such as catalytic reduction and isomerization. All the analogues were purified by column chromatography and characterized by (1)H and (13)C NMR. The anti-inflammatory activities of dillapiole and its analogues were studied in carrageenan-induced rat paw edema model. RESULTS: Dillapiole and di-hydrodillapiole significantly (p<0.05) inhibited rat paw edema. All the other substances tested, including safrole, were less powerful inhibitors with activities inferior to that of indomethacin. DISCUSSION AND CONCLUSION: These findings showed that dillapiole and di-hydrodillapiole have moderate anti-phlogistic properties, indicating that they can be used as prototypes for newer anti-inflammatory compounds. Structure-activity relationship studies revealed that the benzodioxole ring is important for biological activity as well as the alkyl groups in the side chain and the methoxy groups in the aromatic ring.


Asunto(s)
Compuestos Alílicos/farmacología , Antiinflamatorios/farmacología , Dioxoles/farmacología , Inflamación/prevención & control , Piper , Aceites de Plantas/farmacología , Compuestos Alílicos/síntesis química , Compuestos Alílicos/aislamiento & purificación , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/aislamiento & purificación , Carragenina , Cromatografía , Dioxoles/síntesis química , Dioxoles/aislamiento & purificación , Modelos Animales de Enfermedad , Femenino , Indometacina/farmacología , Inflamación/inducido químicamente , Espectroscopía de Resonancia Magnética , Masculino , Estructura Molecular , Piper/química , Hojas de la Planta , Aceites de Plantas/química , Aceites de Plantas/aislamiento & purificación , Plantas Medicinales , Ratas , Ratas Wistar , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA