Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 80(12): 356, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37947886

RESUMEN

Dietary restriction, such as low glycemic index diet (LGID), have been successfully used to treat drug-resistant epilepsy. However, if such diet could also counteract antiepileptogenesis is still unclear. Here, we investigated whether the administration of LGID during the latent pre-epileptic period, prevents or delays the appearance of the overt epileptic phenotype. To this aim, we used the Synapsin II knockout (SynIIKO) mouse, a model of temporal lobe epilepsy in which seizures manifest 2-3 months after birth, offering a temporal window in which LGID may affect epileptogenesis. Pregnant SynIIKO mice were fed with either LGID or standard diet during gestation and lactation. Both diets were maintained in weaned mice up to 5 months of age. LGID delayed the seizure onset and induced a reduction of seizures severity only in female SynIIKO mice. In parallel with the epileptic phenotype, high-density multielectrode array recordings revealed a reduction of frequency, amplitude, duration, velocity of propagation and spread of interictal events by LGID in the hippocampus of SynIIKO females, but not mutant males, confirming the gender-specific effect. ELISA-based analysis revealed that LGID increased cortico-hippocampal allopregnanolone (ALLO) levels only in females, while it was unable to affect ALLO plasma concentrations in either sex. The results indicate that the gender-specific interference of LGID with the epileptogenic process can be ascribed to a gender-specific increase in cortical ALLO, a neurosteroid known to strengthen GABAergic transmission. The study highlights the possibility of developing a personalized gender-based therapy for temporal lobe epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Masculino , Embarazo , Femenino , Ratones , Animales , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/inducido químicamente , Índice Glucémico , Convulsiones , Hipocampo , Epilepsia/genética , Dieta
2.
Front Cell Neurosci ; 14: 602116, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33390907

RESUMEN

Autophagy and endolysosomal trafficking are crucial in neuronal development, function and survival. These processes ensure efficient removal of misfolded aggregation-prone proteins and damaged organelles, such as dysfunctional mitochondria, thus allowing the maintenance of proper cellular homeostasis. Beside this, emerging evidence has pointed to their involvement in the regulation of the synaptic proteome needed to guarantee an efficient neurotransmitter release and synaptic plasticity. Along this line, an intimate interplay between the molecular machinery regulating synaptic vesicle endocytosis and synaptic autophagy is emerging, suggesting that synaptic quality control mechanisms need to be tightly coupled to neurosecretion to secure release accuracy. Defects in autophagy and endolysosomal pathway have been associated with neuronal dysfunction and extensively reported in Alzheimer's, Parkinson's, Huntington's and amyotrophic lateral sclerosis among other neurodegenerative diseases, with common features and emerging genetic bases. In this review, we focus on the multiple roles of autophagy and endolysosomal system in neuronal homeostasis and highlight how their defects probably contribute to synaptic default and neurodegeneration in the above-mentioned diseases, discussing the most recent options explored for therapeutic interventions.

3.
Cell Death Dis ; 11(1): 27, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937775

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Cell Death Dis ; 10(11): 864, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727880

RESUMEN

Synapsin I is a phosphoprotein that coats the cytoplasmic side of synaptic vesicles and regulates their trafficking within nerve terminals. Autoantibodies against Syn I have been described in sera and cerebrospinal fluids of patients with numerous neurological diseases, including limbic encephalitis and clinically isolated syndrome; however, the effects and fate of autoantibodies in neurons are still unexplored. We found that in vitro exposure of primary hippocampal neurons to patient's autoantibodies to SynI decreased the density of excitatory and inhibitory synapses and impaired both glutamatergic and GABAergic synaptic transmission. These effects were reproduced with a purified SynI antibody and completely absent in SynI knockout neurons. Autoantibodies to SynI are internalized by FcγII/III-mediated endocytosis, interact with endogenous SynI, and promote its sequestration and intracellular aggregation. Neurons exposed to human autoantibodies to SynI display a reduced density of SVs, mimicking the SynI loss-of-function phenotype. Our data indicate that autoantibodies to intracellular antigens such as SynI can reach and inactivate their targets and suggest that an antibody-mediated synaptic dysfunction may contribute to the evolution and progression of autoimmune-mediated neurological diseases positive for SynI autoantibodies.


Asunto(s)
Autoanticuerpos/inmunología , Enfermedades del Sistema Nervioso/inmunología , Sinapsis/inmunología , Sinapsinas/genética , Animales , Autoanticuerpos/genética , Citoplasma/genética , Citoplasma/inmunología , Neuronas GABAérgicas/inmunología , Neuronas GABAérgicas/metabolismo , Humanos , Encefalitis Límbica/genética , Encefalitis Límbica/inmunología , Ratones , Enfermedades del Sistema Nervioso/genética , Neuronas , Transporte de Proteínas/genética , Sinapsis/genética , Sinapsinas/inmunología , Transmisión Sináptica/genética , Transmisión Sináptica/inmunología , Vesículas Sinápticas/genética , Vesículas Sinápticas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA