Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(28): 19405-19413, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38968157

RESUMEN

The study of transitions between polymorphic phases is a less investigated chapter of the widely studied book of polymorphism. In this paper, we discuss the phase behavior of a new compound that has been rationally designed to show frustration of H-bonds for the strong amide N-H donor, which cannot be involved in H-bonding nor in van der Waals interactions. The compound (ImB) is a showcase of almost all possible cases of transitions between polymorphs [monotropic/enantiotropic, fast/slow, diffusive/displacive, and single-crystal-to-single-crystal (SCSC)] and of relation between polymorphs with different Z'. Six crystal phases (I, II, III, IV, V, and VI) were identified for it with five crystal-crystal transitions. Two transitions are reversible/SCSC/fast. Of the three monotropic transitions, all non-SCSC, one is slow, and the others are fast. Of the two enantiotropic SCSC transitions, one does not exhibit undercooling, while the other shows strong undercooling. Phase III, with Z' = 6, is stable at room temperature between phase II (Z' = 1), stable at high temperature, and phase IV (Z' = 2), stable at low temperature. All six polymorphs are based on the same O-H···O═C H-bonding synthon, which produces infinite chains in five polymorphs and ring tetramers in one. The sequence of reversible SCSC transitions IV ⇆ III ⇆ II involves a remarkable ping pong of the symmetry rules by which H-bonded chains are built. Based on all of this, a possible roadmap for prediction of SCSC transitions in crystals is shortly outlined.

2.
Inorg Chem ; 60(21): 16213-16222, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34636552

RESUMEN

The synthesis and characterization of the N-rich bis(triazole) compound 1H,4'H-[3,3'-bis(1,2,4-triazole)]-4',5,5'-triamine (C4H7N9) with a N content of 69.6% by weight is reported. The compound exhibits a rich acid-base behavior because it can accept up to two protons, forming a monocation and a dication, and can lose one proton, forming an anion. Measurement of the acid constants has shown that there exist well-defined pH intervals in which each of the four species is predominant in solution, opening the way to their isolation and characterization by single-crystal X-ray analysis as salts with different counterions. Some energetic salts of the monocation or dication containing oxidizing inorganic counterions (dinitramide, perchlorate, and nitrate) were also prepared and characterized in the solid state for their sensitivity. In particular, the neutral compound shows a very remarkable thermal stability in air, with Td = 347 °C, and is insensitive to impact and friction. Salts of the dication with energetic counterions, in particular perchlorate and nitrate, show increased sensitivities and reduced thermal stability. The salt of the monocation with dinitramide as the counterion outperforms other dinitramide salts reported in the literature because of its higher thermal stability (Td = 230 °C in air) and friction insensitiveness.

3.
Cryst Growth Des ; 24(8): 3256-3268, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38659660

RESUMEN

The aim of this work is to shed light on the polymorphism of xanthones, a class of oxygenated molecules well known for their bioactivity, including antioxidant, anticancer, and anti-inflammatory effects. Understanding the polymorphism of xanthones can enable the design of novel solid products for pharmaceutical, nutraceutical, and agrochemical applications. Prior to this work, two entries accounting for different space groups were deposited for 9-xanthone in the Cambridge Structure Database (CSD): an orthorhombic P212121 and a monoclinic P21 structure solved at room and low temperatures, respectively. However, the very high similarity between these two structures and the lack of clear differences in their physical properties (e.g., thermal behavior) suggested the possibility of the existence of only one crystal structure. In fact, the differences shown in the literature data might be related to the chosen operating parameters, as well as the instrumental resolution of the single-crystal X-ray diffraction experiments. In the work presented here, the ambiguity in the polymorphism of xanthone is investigated using thermal analysis, powder and synchrotron single-crystal XRD, and optical microscopy. Additionally, a workflow for the correct identification of twinned crystal structures, which can be applied to other polymorphic systems, is presented. Such workflow combines the collection of a large data set of high-resolution diffraction patterns using synchrotron radiation with the use of principal component analysis, a dimensionality reduction technique, for a quick and effective identification of phase transitions happening during the data collection. Crystallization experiments were designed to promote the formation of different crystal structures of xanthone that were recrystallized based on past literature and beyond.

4.
Sci Rep ; 14(1): 21325, 2024 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266594

RESUMEN

The synthesis and characterization of metal complexes have garnered significant attention due to their versatile applications in scientific and biomedical fields. In this research, two novel copper (Cu) complexes, [Cu(L)(L')(H2O)2] (1) and [Cu(L)(Im)H2O] (2), where L = pyridine-2,6-dicarboxylic acid, L' = 2,4-diamino-6-hydroxypyrimidine, and Im = imidazole, were investigated concerning their sonochemical synthesis, spectroscopic analysis, and biological activity. The complexes' structural characterization was achieved using analytical techniques, including single-crystal X-ray structure determination, FTIR, PXRD, TGA and DTA, SEM, TEM, and EDS. Complex (1) displayed a six-coordinated Cu2+ ion, while complex (2) exhibited a five-coordinated Cu2+ ion. The crystal structures revealed monoclinic (C2/c) and triclinic (P-1) space groups, respectively. Both complexes showcased zero-dimensional (0D) supramolecular networks, primarily driven by hydrogen bonding and π-π stacking interactions, which played pivotal roles in stabilizing the structures and shaping the unique supramolecular architecture. Both complexes demonstrated significant antioxidant activity, suggesting their capability to neutralize free radicals and mitigate oxidative stress-related diseases. Hemolysis percentages were less than 2%, per the ASTM F756-00 standard, indicating non-hemolytic behavior. Low cytotoxicity was observed against fibroblast and MCF-7 cell lines. They do not exhibit antibacterial activity against Escherichia coli and Staphylococcus aureus. These findings suggest that the synthesized Cu2+‒complexes hold considerable promise for applications in drug delivery and cancer treatment. This research contributes to the advancement of supramolecular chemistry and the development of multifunctional materials for diverse scientific and medical applications.


Asunto(s)
Complejos de Coordinación , Cobre , Cobre/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Cristalografía por Rayos X , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Células MCF-7 , Hemólisis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química
5.
Food Res Int ; 194: 114871, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232509

RESUMEN

Emulsions stabilized via Pickering particles are becoming more and more popular due to their high stability and biocompatibility. Hence, developing new ways to produce effective Pickering particles is essential. In this work, we present a crystal engineering approach to obtain precise control over particle properties such as size, shape, and crystal structure, which may affect wettability and surface chemistry. A highly reproducible synthesis method via anti-solvent crystallization was developed to produce sub-micron sized curcumin crystals of the metastable form III, to be used as Pickering stabilizers. The produced crystals presented a clear hydrophobic nature, which was demonstrated by their preference to stabilize water-in-oil (W/O) emulsions. A comprehensive experimental and computational characterization of curcumin crystals was performed to rationalize their hydrophobic nature. Analytical techniques including Raman spectroscopy, powder X-ray diffraction (PXRD), Solid-State Nuclear Magnetic Resonance (SSNMR), scanning electron microscopy (SEM), Differential Scanning Calorimetry (DSC), confocal fluorescence microscopy and contact angle measurements were used to characterize curcumin particles in terms of shape, size and interfacial activity. The attachment energy model was instead applied to study relevant surface features of curcumin crystals, such as topology and facet-specific surface chemistry. This work contributes to the understanding of the effect of crystal properties on the mechanism of Pickering stabilization, and paves the way for the formulation of innovative products in fields ranging from pharmaceuticals to food science.


Asunto(s)
Cristalización , Curcumina , Emulsiones , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Curcumina/química , Emulsiones/química , Difracción de Rayos X , Microscopía Electrónica de Rastreo , Espectrometría Raman , Rastreo Diferencial de Calorimetría , Humectabilidad , Propiedades de Superficie , Agua/química , Espectroscopía de Resonancia Magnética
6.
Cryst Growth Des ; 23(8): 6034-6045, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37547879

RESUMEN

Quercetin, a naturally occurring bioflavonoid substance widely used in the nutraceutical and food industries, exists in various solid forms that can have different physicochemical properties, thus impacting this compound's performance in various applications. In this work, we will clarify the complex solid-form landscape of this molecule. Two elusive isostructural solvates of quercetin were obtained from ethanol and methanol. The obtained crystals were characterized experimentally, but the crystallographic structure could not be solved due to their high instability. Nevertheless, the desolvated structure resulting from a high-temperature treatment (or prolonged storage at ambient conditions) of both these two labile crystals was characterized and solved via powder X-ray diffraction and solid-state nuclear magnetic resonance (SSNMR). This anhydrous crystal structure was compared with another anhydrous quercetin form obtained in our previous work, indicating that, at least, two different anhydrous polymorphs of quercetin exist. Navigating the solid-form landscape of quercetin is essential to ensure accurate control of the functional properties of food, nutraceutical, or pharmaceutical products containing crystal forms of this substance.

7.
Commun Chem ; 6(1): 84, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120643

RESUMEN

The development of efficient CO2 capture and utilization technologies driven by renewable energy sources is mandatory to reduce the impact of climate change. Herein, seven imidazolium-based ionic liquids (ILs) with different anions and cations were tested as catholytes for the CO2 electrocatalytic reduction to CO over Ag electrode. Relevant activity and stability, but different selectivities for CO2 reduction or the side H2 evolution were observed. Density functional theory results show that depending on the IL anions the CO2 is captured or converted. Acetate anions (being strong Lewis bases) enhance CO2 capture and H2 evolution, while fluorinated anions (being weaker Lewis bases) favour the CO2 electroreduction. Differently from the hydrolytically unstable 1-butyl-3-methylimidazolium tetrafluoroborate, 1-Butyl-3-Methylimidazolium Triflate was the most promising IL, showing the highest Faradaic efficiency to CO (>95%), and up to 8 h of stable operation at high current rates (-20 mA & -60 mA), which opens the way for a prospective process scale-up.

8.
Acta Crystallogr C Struct Chem ; 77(Pt 7): 395-401, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34216445

RESUMEN

The solid-state isolation of the different tautomers of a chemical compound can be a challenging problem. In many cases, tautomers with an energy very close to the most stable one cannot be isolated (elusive tautomers). In this article, with reference to the 4-methyl-7-(pyrazin-2-yl)-2H-[1,2,4]triazolo[3,2-c][1,2,4]triazole ligand, for which the elusive 3H-tautomer has an energy only 1.4 kcal mol-1 greater than the most stable 2H form, we show that metal complexation is a successful and reliable way for stabilizing the elusive tautomer. We have prepared two complexes of the neutral ligand with CuBr2 and ZnBr2, namely, aquabromidobis[4-methyl-7-(pyrazin-2-yl)-3H-[1,2,4]triazolo[3,2-c][1,2,4]triazole]copper(II) bromide trihydrate, [CuBr(C8H7N7)2(H2O)]Br·3H2O, and dibromido[4-methyl-7-(pyrazin-2-yl)-2H-[1,2,4]triazolo[3,2-c][1,2,4]triazole][4-methyl-7-(pyrazin-2-yl)-3H-[1,2,4]triazolo[3,2-c][1,2,4]triazole]zinc(II) monohydrate, [ZnBr2(C8H7N7)2]·H2O. The X-ray analysis shows that, in both cases, the elusive 3H-tautomer is present. The results of the crystallographic analysis of the two complexes reflect the different coordination preferences of CuII and ZnII. The copper(II) complex is homotautomeric as it only contains the elusive 3H-tautomer of the ligand. The complex can be described as octahedral with tetragonal distortion. Two 3H-triazolotriazole ligands are bis-chelated in the equatorial plane, while a water molecule and a bromide ion in elongated axial positions complete the coordination environment. The zinc(II) complex, on the other hand, is heterotautomeric and contains two bromide ions and two monodentate ligand molecules, one in the 2H-tautomeric form and the other in the 3H-tautomeric form, both coordinated to the metal in tetrahedral geometry. The observation of mixed-tautomer complexes is unprecedented for neutral ligands. The analysis of the X-ray molecular structures of the two complexes allows the deduction of possible rules for a rational design of mixed-tautomer complexes.

9.
Acta Crystallogr C Struct Chem ; 77(Pt 7): 435-440, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34216450

RESUMEN

The crystal structures of difluorine derivatives of p-terphenyls (nTm) have been determined by single-crystal X-ray diffraction. For the unsymmetrical substituted compounds 2',3'-difluoro-4-methyl-p-terphenyl (1T0, C19H14F2) and 4-ethyl-2',3'-difluoro-4''-methyl-p-terphenyl (1T2, C21H18F2), the crystal structure is disordered, with molecules statistically entering the crystal in up and down orientations, with full superposition of all the atoms, except for those of the terminal groups (H/methyl for 1T0 and methyl/ethyl for 1T2). For triclinic 2',3'-difluoro-4,4''-dimethyl-p-terphenyl (1T1, C20H16F2), with the space group P-1, the two crystallographically independent molecules have the same conformation, which is different from monoclinic 1T0 (space group C2) and 1T2 (space group C2/c). A common feature of the conformation of the three compounds is the noncoplanar twisted arrangement of the three rings of the p-terphenyl moiety. Two-dimensional (2D) Hirshfeld fingerprint plots are consistent with H...H and C...H contacts in the crystal packing. For the three compounds, the phase behaviour has been investigated by POM (Petra/Osiris/Molinspiration) and differential scanning calorimetry (DSC) analysis. 1T2 is mesogenic, with enantiotropic nematic behaviour.

10.
Dalton Trans ; 49(41): 14452-14462, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33043951

RESUMEN

A new N-rich triazolo-triazole derivative, 4-methyl-7-(pyrazin-2-yl)-2H-[1,2,4]triazolo[3,2-c][1,2,4]triazole (C8H7N7), bearing a pyrazine residue at 7-position of the triazolo-triazole bicycle, was synthesized, and its acid-base and metal coordination properties were evaluated in solution. The results showed amphoteric behavior and the formation of stable complexes with Cu(ii) and Zn(ii) in pH intervals in which the ligand is neutral or deprotonated. Computational studies were performed in order to evaluate the stability of the different tautomers/conformers of the ligand, and the proton position in the neutral and acidic forms. Single crystal X-ray analysis of the free neutral ligand (2H/s-trans tautomer/conformer), and of its singly protonated (2H-3H/s-trans), doubly protonated (2H-3H-7H/s-trans) and deprotonated forms showed that the influence of the pyrazine ring on the triazolo-triazole system is mainly as electron withdrawing and chelating group, and proton acceptor. Different coordination modes have been evidenced for the neutral and deprotonated ligand. Upon metal coordination, the neutral ligand switches from 2H/s-trans to 3H/s-cis tautomer/conformer forming five-membered chelate rings, while the anionic deprotonated ligand forms six-membered chelate rings in the s-trans conformation. Altogether, five different tautomers/conformers of the ligand were isolated and characterized. In vitro tests confirmed the general antiproliferative activity of triazolo-triazole compounds and the importance of substitution in position 7 for their selectivity.

11.
Acta Crystallogr C Struct Chem ; 75(Pt 10): 1398-1404, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31589156

RESUMEN

A study of three isomeric compounds containing a phenolic moiety attached to the nitrogen-rich triazolo-triazole bicycle is presented. In the three isomers, the phenolic OH group is in the ortho, meta and para positions. The crystal structure analysis of the meta isomer (C10H9N5O) shows that the 2H-tautomer is present in the crystal and that the molecule adopts a substantially planar geometry. However, the conformation found in the crystal is different compared to the monoprotonated cation of the same compound previously investigated in several salts. The packing of the meta isomer is driven by the formation of strong hydrogen bonds and shows the formation of infinite planar ribbons, parallel to a, formed around 21 crystallographic axes. The three isomers were tested against some cancer cell lines and also against normal cell lines. The ortho isomer shows a weak antiproliferative activity, the meta isomer shows significant antiproliferative activity against some cancer lines and no activity against healthy cell lines, and the para isomer is active against all the tested cell lines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA