Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Metabolites ; 12(11)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36422246

RESUMEN

Polymorphisms in CYP2C9 can significantly interfere with the pharmacokinetic (PK) and pharmacodynamic (PD) parameters of nonsteroidal anti-inflammatory drugs (NSAIDs), including naproxen. The present research aimed to study the PK/PD parameters of naproxen and its metabolite, 6-O-desmethylnaproxen, associated with allelic variations of CYP2C9. In our study, a rapid, selective, and sensitive Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) method was developed and validated for the determination of naproxen and its main metabolite, 6-O-desmethylnaproxen, in oral fluid. Naproxen and its main metabolite were separated using a Shim-Pack XR-ODS 75L × 2.0 column and C18 pre-column at 40 °C using a mixture of methanol and 10 mM ammonium acetate (70:30, v/v), with an injection flow of 0.3 mL/min. The total analytical run time was 3 min. The volunteers, previously genotyped for CYP2C9 (16 ancestral­CYP2C9 *1 and 12 with the presence of polymorphism­CYP2C9 *2 or *3), had their oral fluids collected sequentially before and after taking a naproxen tablet (500 mg) at the following times: 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 6 8, 11, 24, 48, 72 and 96 h. Significant differences in the PK parameters (* p < 0.05) of naproxen in the oral fluid were: Vd/F (L): 98.86 (55.58−322.07) and 380.22 (261.84−1097.99); Kel (1/h): 0.84 (0.69−1.34) and 1.86 (1.09−4.06), in ancestral and mutated CYP2C9 *2 and/or *3, respectively. For 6-O-desmethylnaproxen, no PK parameters were significantly different between groups. The analysis of prostaglandin E2 (PGE2) proved to be effective and sensitive for PD parameters analysis and showed higher levels in the mutated group (p < 0.05). Both naproxen and its main metabolite, 6-O-desmethylnaproxen, and PGE2 in oral fluid can be effectively quantified using LC-MS/MS after a 500 mg oral dose of naproxen. Our method proved to be effective and sensitive to determine the lower limit of quantification of naproxen and its metabolite, 6-O-desmethylnaproxen, in oral fluid (2.4 ng/mL). All validation data, such as accuracy, precision, and repeatability intra- and inter-assay, were less than 15%. Allelic variations of CYP2C9 may be considered relevant in the PK of naproxen and its main metabolite, 6-O-desmethylnaproxen.

2.
PLoS One ; 17(1): e0261853, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35025926

RESUMEN

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is used worldwide to test and trace the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). "Extraction-less" or "direct" real time-reverse transcription polymerase chain reaction (RT-PCR) is a transparent and accessible qualitative method for SARS-CoV-2 detection from nasopharyngeal or oral pharyngeal samples with the potential to generate actionable data more quickly, at a lower cost, and with fewer experimental resources than full RT-qPCR. This study engaged 10 global testing sites, including laboratories currently experiencing testing limitations due to reagent or equipment shortages, in an international interlaboratory ring trial. Participating laboratories were provided a common protocol, common reagents, aliquots of identical pooled clinical samples, and purified nucleic acids and used their existing in-house equipment. We observed 100% concordance across laboratories in the correct identification of all positive and negative samples, with highly similar cycle threshold values. The test also performed well when applied to locally collected patient nasopharyngeal samples, provided the viral transport media did not contain charcoal or guanidine, both of which appeared to potently inhibit the RT-PCR reaction. Our results suggest that direct RT-PCR assay methods can be clearly translated across sites utilizing readily available equipment and expertise and are thus a feasible option for more efficient COVID-19 coronavirus disease testing as demanded by the continuing pandemic.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Transcripción Reversa/genética , SARS-CoV-2/genética , COVID-19/virología , Estudios de Factibilidad , Humanos , Nasofaringe/virología , Pandemias/prevención & control , Sensibilidad y Especificidad , Pruebas Serológicas/métodos , Manejo de Especímenes/métodos
3.
medRxiv ; 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33880478

RESUMEN

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is used worldwide to test and trace the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). "Extraction-less" or "direct" real time-reverse transcription polymerase chain reaction (RT-PCR) is an open-access qualitative method for SARS-CoV-2 detection from nasopharyngeal or oral pharyngeal samples with the potential to generate actionable data more quickly, at a lower cost, and with fewer experimental resources than full RT-qPCR. This study engaged 10 global testing sites, including laboratories currently experiencing testing limitations due to reagent or equipment shortages, in an international interlaboratory ring trial. Participating laboratories were provided a common protocol, common reagents, aliquots of identical pooled clinical samples, and purified nucleic acids and used their existing in-house equipment. We observed 100% concordance across laboratories in the correct identification of all positive and negative samples, with highly similar cycle threshold values. The test also performed well when applied to locally collected patient nasopharyngeal samples, provided the viral transport media did not contain charcoal or guanidine, both of which appeared to potently inhibit the RT-PCR reaction. Our results suggest that open-access, direct RT-PCR assays are a feasible option for more efficient COVID-19 coronavirus disease testing as demanded by the continuing pandemic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA