Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mol Psychiatry ; 28(10): 4474-4484, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37648779

RESUMEN

Mitochondrial dysfunction has been implicated in Parkinson's Disease (PD) progression; however, the mitochondrial factors underlying the development of PD symptoms remain unclear. One candidate is CR6-interacting factor1 (CRIF1), which controls translation and membrane insertion of 13 mitochondrial proteins involved in oxidative phosphorylation. Here, we found that CRIF1 mRNA and protein expression were significantly reduced in postmortem brains of elderly PD patients compared to normal controls. To evaluate the effect of Crif1 deficiency, we produced mice lacking the Crif1 gene in dopaminergic neurons (DAT-CRIF1-KO mice). From 5 weeks of age, DAT-CRIF1-KO mice began to show decreased dopamine production with progressive neuronal degeneration in the nigral area. At ~10 weeks of age, they developed PD-like behavioral deficits, including gait abnormalities, rigidity, and resting tremor. L-DOPA, a medication used to treat PD, ameliorated these defects at an early stage, although it was ineffective in older mice. Taken together, the observation that CRIF1 expression is reduced in human PD brains and deletion of CRIF1 in dopaminergic neurons leads to early-onset PD with stepwise PD progression support the conclusion that CRIF1-mediated mitochondrial function is important for the survival of dopaminergic neurons.


Asunto(s)
Neuronas Dopaminérgicas , Enfermedad de Parkinson , Humanos , Ratones , Animales , Anciano , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/genética , Levodopa/farmacología , Dopamina/metabolismo , Encéfalo/metabolismo , Proteínas de Ciclo Celular/genética
2.
Faraday Discuss ; 230(0): 187-212, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34042933

RESUMEN

Carbon mineralization to solid carbonates is one of the reaction pathways that can not only utilize captured CO2 but also potentially store it in the long term. In this study, the dissolution and carbonation behaviors of alkaline solid wastes (i.e., waste concrete) was investigated. Concrete is one of the main contributors to a large carbon emission in the built environment. Thus, the upcycling of waste concrete via CO2 utilization has multifaceted environmental benefits including CO2 emission reduction, waste management and reduced mining. Unlike natural silicate minerals such as olivine and serpentine, alkaline solid wastes including waste concrete are highly reactive, and thus, their dissolution and carbonation behaviors vary significantly. Here, both conventional acid (e.g., hydrochloric acid) and less studied carbonic acid (i.e., CO2 saturated water) solvent systems were explored to extract Ca from concrete. Non-stoichiometric dissolution behaviors between Ca and Si were confirmed under far-from-equilibrium conditions (0.1 wt% slurry density), and the re-precipitation of the extracted Si was observed at near-equilibrium conditions (5 wt% slurry density), when the Ca extraction was performed at a controlled pH of 3. These experiments, with a wide range of slurry densities, provided valuable insight into Si re-precipitation phenomena and its effect on the mass transfer limitation during concrete dissolution. Next, the use of the partial pressure of CO2 for the pH swing carbon mineralization process was investigated for concrete, and the results were compared to those of Mg-bearing silicate minerals. In the PCO2 swing process, the extraction of Ca was significantly limited by the precipitation of the carbonate phase (i.e., calcite), since CO2 bubbling could not provide a low enough pH condition for concrete-water-CO2 systems. Thus, this study showed that the two-step carbon mineralization via PCO2 swing, that has been developed for Mg-bearing silicate minerals, may not be viable for highly reactive Ca-bearing silicate materials (e.g., concrete). The precipitated calcium carbonate (PCC) derived from waste concrete via a pH swing process showed very promising results with a high CO2 utilization potential as an upcycled construction material.

7.
Biopolymers ; 102(2): 191-6, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26820015

RESUMEN

Mineralization has emerged as a promising strategy for long-term carbon sequestration. These processes involve carbon dioxide hydration followed by mineral precipitation. We have explored the production of whole-cell biocatalysts engineered with carbonic anhydrase (CA) activity to accelerate the CO2 hydration reaction. In this study, short polypeptides were displayed on the surface of E. coli cells and whole-cell biocatalysts containing periplasmically expressed CAs in an attempt to enhance calcite mineral formation. It was found that cells coexpressing recombinant periplasmic CA and surface-displayed GPA peptide (PEVPEGAFDTAI) outperformed other peptide-expressing biocatalysts evaluated in terms of the amount of precipitate formed, as well as the overall formation rate of solids. Cells expressing the Cab CA isoform (BLR-pCab) and Cam isoform (BLR-pCam) with the surface-displayed GPA peptide exhibited 36 and 59% improvements in precipitation amounts, as well as 18 and 60% improvements in overall formation rates, respectively, over similar biocatalysts without GPA expression. The biocatalyst with the best performance was BLR-pCam/GPA, which generated 0.15 g of CaCO3, while BLR cells generated only 0.08 g of CaCO3 under the same small batch reaction conditions. The BLR-pCam/GPA cells also exhibited the fastest formation rates, achieving the maximum change in solution turbidity after only 2.2 min, as opposed to 6.3 min for BLR cells. These results demonstrate that synthetic biology approaches can be used to create novel biocatalysts with the ability to enhance both catalysis and precipitation activities.


Asunto(s)
Carbonato de Calcio/química , Escherichia coli/metabolismo , Biblioteca de Péptidos , Péptidos/química , Precipitación Química , Peso Molecular , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo
8.
Phys Chem Chem Phys ; 16(42): 23440-50, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25264731

RESUMEN

Magnesite is the most desirable phase within the magnesium carbonate family for carbon storage for a number of reasons: magnesium efficiency, omission of additional crystal waters and thermodynamic stability. For large-scale carbonation to be a viable industrial process, magnesite precipitation must be made to occur rapidly and reliably. Unfortunately, the formation of metastable hydrated magnesium carbonate phases (e.g. MgCO3·3H2O and Mg5(CO3)4(OH)2·4H2O) interferes with the production of anhydrous magnesite under a variety of reaction conditions because magnesite crystals are slower to both nucleate and grow compared to the hydrated carbonate phases. Furthermore, the reaction conditions required for the formation of each magnesium carbonate phases have not been well understood with conflicting literature data. In this study, the effects of both magnesite (MgCO3) and inert (Al2O3) seed particles on the precipitation of magnesium carbonates from a Mg(OH)2 slurry were explored. It was interesting that MgCO3 seeding was shown to accelerate anhydrous magnesite growth at temperatures (80-150 °C), where it would normally not form in short time scale. Since the specific surface areas of MgCO3 and Al2O3 seeding particles were similar, this phenomenon was due to the difference in the surface chemistry of two seeding particles. By providing a template with similar chemistry for the growth of magnesite, the precipitation of anhydrous magnesite was demonstrated. The effect of temperature on seeded carbonation was also investigated. A comparison with published MgCO3 precipitation rate laws indicated that the precipitation of magnesite was limited by either CO2 adsorption from the gas phase or the dissolution rate of Mg(OH)2.

9.
Nanoscale ; 16(17): 8521-8532, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38592848

RESUMEN

A critical concern regarding electrolyte formulation in an electrochemical environment is the impact of the interaction of the multiple components (i.e., supporting electrolyte or additive) with the electrode surface. Recently, liquid-like neat Nanoparticle Organic Hybrid Materials (NOHMs) have been considered as an electrolyte component to improve the transport of redox-active species to the electrode surface. However, the structure and assembly of the NOHMs near the electrode surface is unknown and could significantly impact the electrode-electrolyte interface. Hence, we have investigated the depth profile of polyetheramine (HPE) polymer and NOHM-I-HPE (nanoparticles with ionically bonded HPE polymer) in deuterated water (D2O) in the presence of two different salts (KHCO3 and ZnCl2) near two different electrode surfaces using neutron reflectometry. Moreover, the depth profile of the NOHM-I-HPE near the electrode surface in a potential has also been studied with in situ reflectivity experiments. Our results indicate that a change in the chemical structure/hydrophilicity of the electrode surface does not significantly impact the ordering of HPE polymer or NOHM-I-HPE near the surface. This study also indicates that the NOHM-I-HPE particles form a clear layer near the electrode surface immediately above an adsorbed layer of free polymer on the electrode surface. The addition of salt does not impact the layering of NOHM-I-HPE, though it does alter the conformation of the polymer grafted to the nanoparticle surface and free polymer sequestered near the surface. Finally, the application of negative potential results in an increased amount of free polymer near the electrode surface. Correlating the depth profile of free polymer and NOHM-I-HPE particles with the electrochemical performance indicates that this assembly of free polymer near the electrode surface in NOHM-I-HPE solutions contributes to the higher current density of the system. Therefore, this holistic study offers insight into the importance of the assembly of NOHM-I-HPE electrolyte and free polymer near the electrode surface in an electrochemical milieu on its performance.

10.
Sci Adv ; 10(16): eadk2350, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640239

RESUMEN

Nanoparticle organic hybrid materials (NOHMs) have been proposed as excellent electrolytes for combined CO2 capture and electrochemical conversion due to their conductive nature and chemical tunability. However, CO2 capture behavior and transport properties of these electrolytes after CO2 capture have not yet been studied. Here, we use a variety of nuclear magnetic resonance (NMR) techniques to explore the carbon speciation and transport properties of branched polyethylenimine (PEI) and PEI-grafted silica nanoparticles (denoted as NOHM-I-PEI) after CO2 capture. Quantitative 13C NMR spectra collected at variable temperatures reveal that absorbed CO2 exists as carbamates (RHNCOO- or RR'NCOO-) and carbonate/bicarbonate (CO32-/HCO3-). The transport properties of PEI and NOHM-I-PEI studied using 1H pulsed-field-gradient NMR, combined with molecular dynamics simulations, demonstrate that coulombic interactions between negatively and positively charged chains dominate in PEI, while the self-diffusion in NOHM-I-PEI is dominated by silica nanoparticles. These results provide strategies for selecting adsorbed forms of carbon for electrochemical reduction.

11.
Biotechnol Bioeng ; 110(7): 1865-73, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23404317

RESUMEN

Carbonic anhydrase is a valuable and efficient catalyst for CO(2) hydration. Most often the free enzyme is employed which complicates catalyst recycling, and can increase cost due to the need for protein purification. Immobilization of the enzyme may address these shortcomings. Here we report the development of whole-cell biocatalysts for CO(2) hydration via periplasmic expression of two forms of carbonic anhydrase in Escherichia coli using two different targeting sequences. The enzymatic turnover numbers (kcat ) and catalytic efficiencies (k(cat)/K(M)) were decreased by an order of magnitude as compared to the free soluble enzyme, indicating the introduction of transport limitations. However, the thermal stabilities were improved for most configurations (>88% activity retention up to 95°C for three of four whole-cell biocatalysts), operational stabilities were more than satisfactory (100% retention after 24 h of use for all four whole-cell biocatalysts), and CO(2) hydration was significantly enhanced relative to the uncatalyzed reaction (~50-70% increase in CaCO(3) precipitate formed). A significant advantage of the whole-cell approach is that protein purification is no longer necessary, and the cells can be easily separated and recycled in future applications including biofuel production, biosensors, and carbon capture and storage.


Asunto(s)
Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Escherichia coli/enzimología , Expresión Génica , Periplasma/enzimología , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/química , Estabilidad de Enzimas , Escherichia coli/genética , Cinética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
12.
Langmuir ; 29(39): 12234-42, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23898789

RESUMEN

Liquidlike nanoparticle organic hybrid materials (NOHMs) were designed and synthesized by ionic grafting of polymer chains onto nanoscale silica units called polyhedral oligomeric silsesquioxane (POSS). The properties of these POSS-based NOHMs relevant to CO2 capture, in particular thermal stability, swelling, viscosity, as well as their interactions with CO2, were investigated using thermogravimetric analyses, differential scanning calorimetry, and NMR and ATR FT-IR spectroscopies. The results indicate that POSS units significantly enhance the thermal stability of the hybrid materials, and their porous nature also contributes to the overall CO2 capture capacity of NOHMs. The viscosity of the synthesized NOHMs was comparable to those reported for ionic liquids, and rapidly decreased as the temperature increased. The sorption of CO2 in POSS-based NOHMs also reduced their viscosities. The swelling behavior of POSS-based NOHMs was similar to that of previously studied nanoparticle-based NOHMs, and this generally resulted in less volume increase in NOHMs compared to their corresponding polymers for the same amount of CO2 loading.

13.
Phys Chem Chem Phys ; 15(36): 15185-92, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23925694

RESUMEN

Carbon mineralization has recently received much attention as one of the most promising options for CO2 sequestration. The engineered weathering of silicate minerals as a means of permanent carbon storage has unique advantages such as the abundance of naturally occurring calcium and magnesium-bearing minerals and the formation of environmentally-benign and geologically stable solids via a thermodynamically favored carbonation reaction. However, several challenges need to be overcome to successfully deploy carbon mineralization on a large scale. In particular, the acceleration of the rate-limiting mineral dissolution step along with process optimization is essential to ensure the economic feasibility of the proposed carbon storage technology. In this study, the effect of various types of chelating agents on the dissolution rate of calcium-bearing silicate mineral, wollastonite, was explored to accelerate its weathering rate. It was found that chelating agents such as acetic acid and gluconic acid significantly improved the dissolution kinetics of wollastonite even at a much diluted concentration of 0.006 M by complexing with calcium in the mineral matrix. Calcium extracted from wollastonite was then reacted with a carbonate solution to form precipitated calcium carbonate (PCC), while tuning the particle size and the morphological structure of PCC to mimic commercially available PCC-based filler materials.

14.
Nanoscale ; 15(3): 855-858, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36546352

RESUMEN

An introduction to the Nanoscale themed collection on CO2 capture and conversion, featuring exciting research on advanced nanoscale materials and reactions.

15.
ACS Appl Mater Interfaces ; 14(19): 22016-22029, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35522595

RESUMEN

Nanoparticle organic hybrid materials (NOHMs) are liquid-like materials composed of an inorganic core to which a polymeric canopy is ionically tethered. NOHMs have unique properties including negligible vapor pressure, high oxidative thermal stability, and the ability to bind to reactive species of interest due to the tunability of their polymeric canopy. This makes them promising multifunctional materials for a wide range of energy and environmental technologies, including electrolyte additives for electrochemical energy storage (e.g., flow batteries) and the electrochemical conversion of CO2 to chemicals and fuels. Due to their unique transport behaviors in fluid systems, an understanding of the near-electrode surface behavior of NOHMs in electrolyte solutions and their effect on electrochemical reactions is still lacking. In this work, the complexation of zinc (Zn) by NOHMs with an ionically tethered polyetheramine canopy (HPE) (NOHM-I-HPE) was studied using attenuated total reflectance Fourier transform infrared and Carbon-13 nuclear magnetic resonance spectroscopy. Additionally, various electrochemical techniques were employed to discern the role of NOHM-I-HPE during zinc electrodeposition, and the results were compared to those of the electrochemical system containing untethered HPE polymers. Our findings confirmed that NOHM-I-HPE and HPE reversibly complex zinc in the aqueous electrolyte. NOHM-I-HPE and HPE were found to block some of the electrode active sites, reducing the overall current density during electrodeposition, while facilitating the formation of smooth zinc deposits, as revealed by surface imaging and diffraction techniques. Observed variations in the current density responses and the degree of passivation created by the NOHM-I-HPE and HPE adsorbed on the electrode surface revealed that their different packing behaviors at the electrode-electrolyte interface influence the zinc deposition mechanism. The presence of the nanoparticle and ordering offered by the NOHMs as well as the structured conformation of the polymeric canopy allowed the formation of void spaces and free volumes for enhanced transport behaviors. These findings provided insights into how structured electrolyte additives such as NOHMs can allow for advancements in electrolyte design for controlled deposition of metal species from energy-dense electrolytes or for other electrochemical reactions.

16.
JACS Au ; 2(1): 214-222, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35098238

RESUMEN

The electrochemical carbon dioxide reduction reaction (CO2RR) using copper (Cu)-based catalysts has received significant attention mainly because Cu is an element capable of producing hydrocarbons and oxygenates. One possible way to control the CO2RR performance at the electrode interface is by modifying catalysts with specific functional groups of different polymeric binders, which are necessary components in the process of electrode fabrication. However, the modification effect of the key functional groups on the CO2RR activity and selectivity is poorly understood over Cu-based catalysts. In this work, the role of functional groups (e.g., -COOH and -CF2 groups) in hydrophilic and hydrophobic polymeric binders on the CO2RR of Cu-based catalysts is investigated using a combination of electrochemical measurements, in situ characterization, and density functional theory (DFT) calculations. DFT results reveal that functional groups influence the binding energies of key intermediates involved in both CO2RR and the competing hydrogen evolution reaction, consistent with experimental observation of binder-dependent product distributions among formic acid, CO, CH4, and H2. This study provides a fundamental understanding that the selection of desired polymeric binders is a useful strategy for tuning the CO2RR activity and selectivity.

17.
JACS Au ; 2(3): 590-600, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35373208

RESUMEN

As renewable energy is rapidly integrated into the grid, the challenge has become storing intermittent renewable electricity. Technologies including flow batteries and CO2 conversion to dense energy carriers are promising storage options for renewable electricity. To achieve this technological advancement, the development of next generation electrolyte materials that can increase the energy density of flow batteries and combine CO2 capture and conversion is desired. Liquid-like nanoparticle organic hybrid materials (NOHMs) composed of an inorganic core with a tethered polymeric canopy (e.g., polyetheramine (HPE)) have a capability to bind chemical species of interest including CO2 and redox-active species. In this study, the unique response of NOHM-I-HPE-based electrolytes to salt addition was investigated, including the effects on solution viscosity and structural configurations of the polymeric canopy, impacting transport behaviors. The addition of 0.1 M NaCl drastically lowered the viscosity of NOHM-based electrolytes by up to 90%, reduced the hydrodynamic diameter of NOHM-I-HPE, and increased its self-diffusion coefficient, while the ionic strength did not alter the behaviors of untethered HPE. This study is the first to fundamentally discern the changes in polymer configurations of NOHMs induced by salt addition and provides a comprehensive understanding of the effect of ionic stimulus on their bulk transport properties and local dynamics. These insights could be ultimately employed to tailor transport properties for a range of electrochemical applications.

18.
Nanoscale ; 14(40): 14962-14969, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36200609

RESUMEN

Herein, we describe the use of an ultramicroporous metal-organic framework (MOF) with a composition of [Ni3(pzdc)2(ade)2(H2O)1.5]·(H2O)1.3 (pzdc: 3,5-pyrazole dicarboxylic acid; ade: adenine), for the selective capture of carbon dioxide (CO2) from wet flue gas followed by its conversion to value-added products. This MOF is comprised of one-dimensional Ni(II)-pyrazole dicarboxylate-adenine chains; through pi-pi stacking and H-bonding interactions, these one-dimensional chains stack into a three-dimensional supramolecular structure with a one-dimensional pore network. Upon heating, our MOF undergoes a color change from light blue to lavender, indicating a change in the coordination geometry of Ni(II). Variable temperature ultraviolet-visible (UV/vis) spectroscopy data revealed a blue shift of the d-d transitions, suggesting a change in the Ni-coordination geometry from octahedral to a mixture of square planar and square pyramidal. The removal of the water molecules coordinated to Ni(II) leads to the generation of a MOF with open Ni(II) sites. Nitrogen isotherms collected at 77 K and 1 bar revealed that this MOF is microporous with a pore volume of 0.130 cm3 g-1. Carbon dioxide isotherms show a step in the uptake at low pressure, after which the CO2 uptake is saturated. The step in the CO2 uptake is likely attributable to the rearrangement of the three-dimensional supramolecular structure to accommodate CO2 within its pores. The affinity of this MOF for CO2 is 35.5 kJ mol-1 at low loadings, and it increases to 41.9 kJ mol-1 at high loadings. While our MOF is porous to CO2 and water (H2O) at 298 K, it is not porous to N2, and the CO2/N2 selectivity increases from 28.5 to 31.5 as a function of pressure. Breakthrough experiments reveal that this MOF can capture CO2 from dry and wet flue gas with uptake capacities of 1.48 ± 0.01 and 1.14 ± 0.06 mmol g-1, respectively. The MOF can be regenerated and reused at least three times, demonstrating consistent CO2 uptake capacities. Upon understanding the sorption behavior of this MOF, catalysis experiments show that the MOF is catalytically active in the fixation of CO2 into an epoxide ring for the formation of a cyclic carbonate. The turnover frequency for this reaction is 21.95 ± 0.03 h-1. The MOF showed no catalytic deterioration after two cycles and maintained comparable catalytic activity when dry and wet CO2/N2 mixtures were used. This highlights that both N2 and H2O do not dramatically affect the catalytic activity of our MOF toward CO2 fixation.

19.
Nanotechnology ; 22(32): 325302, 2011 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-21772071

RESUMEN

Monoaxial silica nanofibers containing iron species as well as coaxial nanofibers with a pure silica core and a silica shell containing high concentrations of iron nanocrystals were fabricated via electrospinning precursor solutions, followed by thermal treatment. Tetraethyl-orthosilicate (TEOS) and iron nitrate (Fe(NO(3))(3)) were used as the precursors for the silica and iron phases, respectively. Thermal treatments of as-spun precursor fibers were applied to generate nanocrystals of iron with various oxidation states (pure iron and hematite). Scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to probe the fiber morphology and crystal structures. The results indicated that the size, phase, and placement of iron nanocrystals can be tuned by varying the precursor concentration, thermal treatment conditions, and processing scheme. The resulting nanofiber/metal systems obtained via both monoaxial and coaxial electrospinning were applied as catalysts to the alkaline hydrolysis of glucose for the production of fuel gas. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and bulk weight change in a furnace with residual gas analysis (RGA) were used to evaluate the performance of the catalysts for various ratios of both Fe to Si, and catalyst to glucose, and the oxidation state of the iron nanocrystals. The product gas is composed of mostly H(2) (>96 mol%) and CH(4) with very low concentrations of CO(2) and CO. Due to the clear separation of reaction temperature for H(2) and CH(4) production, pure hydrogen can be obtained at low reaction temperatures. Our coaxial approach demonstrates that placing the iron species selectively near the fiber surface can lead to two to three fold reduction in catalytic consumption compared to the monoaxial fibers with uniform distribution of catalysts.


Asunto(s)
Glucosa/química , Hidrógeno/química , Nanofibras/química , Nanotecnología/métodos , Biocombustibles , Dióxido de Carbono/química , Monóxido de Carbono/química , Glucosa/metabolismo , Hidrógeno/análisis , Hidrógeno/metabolismo , Hidrólisis , Hierro/química , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nanofibras/ultraestructura , Silanos/química , Temperatura , Termogravimetría , Difracción de Rayos X
20.
Environ Sci Technol ; 45(15): 6633-9, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21675772

RESUMEN

Novel liquid-like nanoparticle organic hybrid materials (NOHMs) which possess unique features including negligible vapor pressure and a high degree of tunability were synthesized and their physical and chemical properties as well as CO(2) capture capacities were investigated. NOHMs can be classified based on the synthesis methods involving different bonding types, the existence of linkers, and the addition of task-specific functional groups including amines for CO(2) capture. As a canopy of polymeric chains was grafted onto the nanoparticle cores, the thermal stability of the resulting NOHMs was improved. In order to isolate the entropy effect during CO(2) capture, NOHMs were first prepared using polymers that do not contain functional groups with strong chemical affinity toward CO(2). However, it was found that even ether groups on the polymeric canopy contributed to CO(2) capture in NOHMs via Lewis acid-base interactions, although this effect was insignificant compared to the effect of task-specific functional groups such as amine. In all cases, a higher partial pressure of CO(2) was more favorable for CO(2) capture, while a higher temperature caused an adverse effect. Multicyclic CO(2) capture tests confirmed superior recyclability of NOHMs and NOHMs also showed a higher selectivity toward CO(2) over N(2)O, O(2) and N(2).


Asunto(s)
Dióxido de Carbono/química , Nanopartículas/química , Compuestos Orgánicos/química , Absorción , Aminas/química , Éteres/química , Nanopartículas/ultraestructura , Presión , Reciclaje , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA