Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 17(3): e2005608, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33354931

RESUMEN

Ionic defects (e.g., organic cations and halide anions), preferably residing along grain boundaries (GBs) and on perovskite film surfaces, are known to be a major source of the notorious environmental instability of perovskite solar cells (PeSCs). Although passivating ionic defects is desirable, previous approaches using Lewis base or acid molecules as additives suppress only the negatively or positively charged defects, thus leaving oppositely charged defects. In this work, both the cationic and anionic defects inside methyl ammonium lead tri-iodide (MAPbI3 ) are simultaneously passivated by introducing a zwitterionic form of the amino acid, L-alanine, into the precursor solution as an additive. L-alanine has both positive (NH3+ ) and negative (COO- ) functional groups at a specific solvent pH, thereby passivating both the cation and anion defects in MAPbI3 . The addition of L-alanine increases the grain size of the perovskite crystals and lengthens the charge carrier lifetime (τ > 1 µs), leading to improved power conversion efficiencies (PCEs) of 20.3% (from 18.3% without an additive) for small-area (4.64 mm2 ) devices and 15.6% (from 13.5%) for large-area submodules (9.06 cm2 ). More importantly, the authors' approach also significantly enhances the shelf storage and photoirradiation stabilities of PeSCs.

2.
Angew Chem Int Ed Engl ; 60(11): 5970-5977, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33315288

RESUMEN

Reported here is a new high electron affinity acceptor end group for organic semiconductors, 2,1,3-benzothiadiazole-4,5,6-tricarbonitrile (TCNBT). An n-type organic semiconductor with an indacenodithiophene (IDT) core and TCNBT end groups was synthesized by a sixfold nucleophilic substitution with cyanide on a fluorinated precursor, itself prepared by a direct arylation approach. This one-step chemical modification significantly impacted the molecular properties: the fluorinated precursor, TFBT IDT, a poor ambipolar semiconductor, was converted into TCNBT IDT, a good n-type semiconductor. The electron-deficient end group TCNBT dramatically decreased the energy of the highest occupied and lowest unoccupied molecular orbitals (HOMO/LUMO) compared to the fluorinated analogue and improved the molecular orientation when utilized in n-type organic field-effect transistors (OFETs). Solution-processed OFETs based on TCNBT IDT exhibited a charge-carrier mobility of up to µe ≈0.15 cm2 V-1 s-1 with excellent ambient stability for 100 hours, highlighting the benefits of the cyanated end group and the synthetic approach.

3.
Small ; 16(3): e1906109, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31859444

RESUMEN

Organic semiconductors (OSCs) are highly susceptible to the formation of metastable polymorphs that are often transformed by external stimuli. However, thermally reversible transformations in OSCs with stability have not been achieved due to weak van der Waals forces, and poor phase homogeneity and crystallinity. Here, a polymorph of a single crystalline 2,7-dioctyl[1] benzothieno[3,2-b][1]benzothio-phene rod on a low molecular weight poly(methyl methacrylate) (≈120k) that limits crystal coarsening during solvent vapor annealing is fabricated. Molecules in the polymorph lie down slightly toward the substrate compared to the equilibrium state, inducing an order of greater resistivity. During thermal cycling, the polymorph exhibits a reversible change in resistivity by 5.5 orders with hysteresis; this transition is stable toward bias and thermal cycling. Remarkably, varying cycling temperatures leads to diverse resistivities near room temperature, important for nonvolatile multivalue memories. These trends persist in the carrier mobility and on/off ratio of the polymorph field-effect transistor. A combination of in situ grazing incident wide angle X-ray scattering analyses, visualization for electronic and structural analysis simulations, and density functional theory calculations reveals that molecular tilt governs the charge transport characteristics; the polymorph transforms as molecules tilt, and thereby, only a homogeneous single-crystalline phase appears at each temperature.

4.
Proc Natl Acad Sci U S A ; 113(50): 14261-14266, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27911774

RESUMEN

Simultaneously achieving high optical transparency and excellent charge mobility in semiconducting polymers has presented a challenge for the application of these materials in future "flexible" and "transparent" electronics (FTEs). Here, by blending only a small amount (∼15 wt %) of a diketopyrrolopyrrole-based semiconducting polymer (DPP2T) into an inert polystyrene (PS) matrix, we introduce a polymer blend system that demonstrates both high field-effect transistor (FET) mobility and excellent optical transparency that approaches 100%. We discover that in a PS matrix, DPP2T forms a web-like, continuously connected nanonetwork that spreads throughout the thin film and provides highly efficient 2D charge pathways through extended intrachain conjugation. The remarkable physical properties achieved using our approach enable us to develop prototype high-performance FTE devices, including colorless all-polymer FET arrays and fully transparent FET-integrated polymer light-emitting diodes.

5.
Nano Lett ; 14(12): 7100-6, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25372930

RESUMEN

Organic semiconductors are key building blocks for future electronic devices that require unprecedented properties of low-weight, flexibility, and portability. However, the low charge-carrier mobility and undesirable processing conditions limit their compatibility with low-cost, flexible, and printable electronics. Here, we present significantly enhanced field-effect mobility (µ(FET)) in semiconducting polymers mixed with boron-doped carbon nanotubes (B-CNTs). In contrast to undoped CNTs, which tend to form undesired aggregates, the B-CNTs exhibit an excellent dispersion in conjugated polymer matrices and improve the charge transport between polymer chains. Consequently, the B-CNT-mixed semiconducting polymers enable the fabrication of high-performance FETs on plastic substrates via a solution process; the µFET of the resulting FETs reaches 7.2 cm(2) V(-1) s(-1), which is the highest value reported for a flexible FET based on a semiconducting polymer. Our approach is applicable to various semiconducting polymers without any additional undesirable processing treatments, indicating its versatility, universality, and potential for high-performance printable electronics.

6.
Nanomaterials (Basel) ; 14(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38535650

RESUMEN

The bulk-heterojunction (BHJ) system that uses a π-conjugated polymer as an electron donor, and a fullerene derivative as an electron acceptor, is widely used in organic solar cells (OSCs) to facilitate efficient charge separation and extraction. However, the conventional BHJ system still suffers from unwanted phase segregation caused by the existence of significant differences in surface energy between the two BHJ components and the charge extraction layer during film formation. In the present work, we demonstrate a sophisticated control of fast film-growth kinetics that can be used to achieve a uniform distribution of donor and acceptor materials in the BHJ layer of OSCs without undesirable phase separation. Our approach involves depositing the BHJ solution onto a spinning substrate, thus inducing rapid evaporation of the solvent during BHJ film formation. The fast-growth process prevents the fullerene derivative from migrating toward the charge extraction layer, thereby enabling a homogeneous distribution of the fullerene derivative within the BHJ film. The OSCs based on the fast-growth BHJ thin film are found to exhibit substantial increases in JSC, fill factor, and a PCE up to 11.27 mA/cm2, 66%, and 4.68%, respectively; this last value represents a remarkable 17% increase in PCE compared to that of conventional OSCs.

7.
Heliyon ; 9(7): e18209, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37519700

RESUMEN

Efforts to commercialize organic solar cells (OSCs) by developing roll-to-roll compatible modules have encountered challenges in optimizing printing processes to attain laboratory-level performance in fully printable OSC architectures. In this study, we present efficient OSC modules fabricated solely through printing methods. We systematically evaluated the impact of processing solvents on the morphology of crucial layers, such as the hole transport, photoactive, and electron transport layers, applied using the doctor blade coating method, with a particular focus on processability. Notably, deposition of charge transport layer using printing techniques is still a challenging task, mainly due to the hydrophobic characteristic of the organic photoactive layer. To overcome this issue, we investigated the solvent effect of a well-studied cathode interlayer, bathocuproine (BCP). We were able to form a uniform thin BCP film (∼10 nm) on a non-fullerene based organic photoactive layer using the doctor bladed coating method. Our results showed that the use of volatile alcohols in the BCP processing required a delicate balance between wettability and vaporization, which contrasted with the results for spin-coated films. These findings provide important insights into improving the efficiency of printing techniques for depositing charge transport layers. The fully printed OSC modules, featuring uniform and continuous BCP layer formation, achieved an impressive power conversion efficiency of 10.8% with a total area of 10.0 cm2 and a geometrical fill factor of 86.5%.

8.
Adv Sci (Weinh) ; 9(32): e2203663, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36104225

RESUMEN

Metal-air batteries as alternatives to the existing lithium-ion battery are becoming increasingly attractive sources of power due to their high energy-cost competitiveness and inherent safety; however, their low oxygen evolution and reduction reaction (OER/ORR) performance and poor operational stability must be overcome prior to commercialization. Herein, it is demonstrated that a novel class of hydrothermally grown dual-phase heterogeneous electrocatalysts, in which silver-manganese (AgMn) heterometal nanoparticles are anchored on top of 2D nanosheet-like nickel vanadium oxide (NiV2 O6 ), allows an enlarged surface area and efficient charge transfer/redistribution, resulting in a bifunctional OER/ORR superior to those of conventional Pt/C or RuO2 . The dual-phase NiV2 O6 /AgMn catalysts on the air cathode of a zinc-air battery lead to a stable discharge-charge voltage gap of 0.83 V at 50 mA cm-2 , with a specific capacity of 660 mAh g-1 and life cycle stabilities of more than 146 h at 10 mA cm-2 and 11 h at 50 mA cm-2 . The proposed new class of dual-phase NiV2 O6 /AgMn catalysts are successfully applied as pouch-type zinc-air batteries with long-term stability over 33.9 h at 10 mA cm-2 .

9.
ACS Appl Mater Interfaces ; 14(17): 19785-19794, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35420778

RESUMEN

The choice of the chlorine (Cl) atom as an electron-withdrawing substituent in conjugated polymers leads to a higher potential in the commercialization of polymer solar cells than its fluorine counterpart because of the versatility and cost-effectiveness of the chlorination process. In addition, the population and location of Cl substituents can significantly influence the photovoltaic characteristics of polymers. In this study, three chlorinated quinoxaline-based polymers were invented to examine the numerical and positioning effects of the Cl atom on their photovoltaic characteristics. The number of Cl substituents in the reference polymer, PBCl-Qx, was adjusted to three: two Cl atoms in the benzodithiophene-type D unit and one Cl atom in the quinoxaline-type A unit. Subsequently, two more Cl atoms were selectively introduced at the 4- and 5-positions of the alkylated thiophene moieties at the 2,3-positions of the quinoxaline moiety in PBCl-Qx to obtain the additional polymers PBCl-Qx4Cl and PBCl-Qx5Cl, respectively. The conventional PBCl-Qx4Cl device exhibited a better power conversion efficiency (PCE) of 12.95% as compared to those of PBCl-Qx (12.44%) and PBCl-Qx5Cl (11.82%) devices. The highest PCE of the device with PBCl-Qx4Cl was ascribed to an enhancement in the open-circuit voltage and fill factor induced by the deeper energy level of the highest occupied molecular orbital and the favorable morphological features in its blended film with Y6.

10.
Adv Sci (Weinh) ; 8(14): 2100332, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34306977

RESUMEN

The advent of special types of polymeric semiconductors, known as "polymer blends," presents new opportunities for the development of next-generation electronics based on these semiconductors' versatile functionalities in device applications. Although these polymer blends contain semiconducting polymers (SPs) mixed with a considerably high content of insulating polymers, few of these blends unexpectedly yield much higher charge carrier mobilities than those of pure SPs. However, the origin of such an enhancement has remained unclear owing to a lack of cases exhibiting definite improvements in charge carrier mobility, and the limited knowledge concerning the underlying mechanism thereof. In this study, the morphological changes and internal nanostructures of polymer blends based on various SP types with different intermolecular interactions in an insulating polystyrene matrix are investigated. Through this investigation, the physical confinement of donor-acceptor type SP chains in a continuous nanoscale network structure surrounded by polystyrenes is shown to induce structural ordering with more straight edge-on stacked SP chains. Hereby, high-performance and transparent organic field-effect transistors with a hole mobility of ≈5.4 cm2 V-1 s-1 and an average transmittance exceeding 72% in the visible range are achieved.

11.
ACS Appl Mater Interfaces ; 12(37): 41877-41885, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32840103

RESUMEN

Despite recent breakthroughs in the fabrication of spin-coated small-area devices (≤0.1 cm2) with power conversion efficiencies (PCEs) of more than 17%, printed large-area organic solar cells (OSCs) are significantly less efficient because of the intrinsic differences between the coating dynamics of the two types of OSCs. The PCEs of printed large-area (∼100 cm2) OSCs have typically been decreased compared with those of small-area spin-coated devices. In this work, an efficient low-temperature printing method to fabricate high-efficiency large-area nonfullerene-based OSC modules is successfully demonstrated. A systematic study of the relationship between the concentration of the photoactive solution and the resulting film properties reveals that the large-area modules (85 cm2) produced in this work deliver excellent performance, yielding PCEs of up to 8.18% with a geometric fill factor of 85%. These novel OSC modules are ∼87% as efficient as small-area printed single cells (cell PCE ∼9.43% with 1 cm2).

12.
ACS Appl Mater Interfaces ; 12(23): 26232-26238, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32419449

RESUMEN

We fabricated window-film-type organic photovoltaics with flexible transparent electrodes (FTEs). By overcoming the poor adhesion between layers, we created ultrathin metal electrodes (bottom FTE) on flexible substrates and transferred conducting polymers onto the photoactive layer (top FTE), providing power conversion efficiencies of 4.9% (7.4%) with average visible transmittances of 38% (18%).

13.
Sci Adv ; 4(8): eaat3604, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30128356

RESUMEN

Realizing industrial-scale, large-area photovoltaic modules without any considerable performance losses compared with the performance of laboratory-scale, small-area perovskite solar cells (PSCs) has been a challenge for practical applications of PSCs. Highly sophisticated patterning processes for achieving series connections, typically fabricated using printing or laser-scribing techniques, cause unexpected efficiency drops and require complicated manufacturing processes. We successfully fabricated high-efficiency, large-area PSC modules using a new electrochemical patterning process. The intrinsic ion-conducting features of perovskites enabled us to create metal-filamentary nanoelectrodes to facilitate the monolithic serial interconnections of PSC modules. By fabricating planar-type PSC modules through low-temperature annealing and all-solution processing, we demonstrated a notably high module efficiency of 14.0% for a total area of 9.06 cm2 with a high geometric fill factor of 94.1%.

14.
Adv Mater ; 30(3)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29210115

RESUMEN

Despite the high expectation of deformable and see-through displays for future ubiquitous society, current light-emitting diodes (LEDs) fail to meet the desired mechanical and optical properties, mainly because of the fragile transparent conducting oxides and opaque metal electrodes. Here, by introducing a highly conductive nanofibrillated conducting polymer (CP) as both deformable transparent anode and cathode, ultraflexible and see-through polymer LEDs (PLEDs) are demonstrated. The CP-based PLEDs exhibit outstanding dual-side light-outcoupling performance with a high optical transmittance of 75% at a wavelength of 550 nm and with an excellent mechanical durability of 9% bending strain. Moreover, the CP-based PLEDs fabricated on 4 µm thick plastic foils with all-solution processing have extremely deformable and foldable light-emitting functionality. This approach is expected to open a new avenue for developing wearable and attachable transparent displays.

15.
Adv Mater ; 29(22)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28394417

RESUMEN

Despite the recent unprecedented increase in the power conversion efficiencies (PCEs) of small-area devices (≤0.1 cm2 ), the PCEs deteriorate drastically for PSCs of larger areas because of the incomplete film coverage caused by the dewetting of the hydrophilic perovskite precursor solutions on the hydrophobic organic charge-transport layers (CTLs). Here, an innovative method of fabricating scalable PSCs on all types of organic CTLs is reported. By introducing an amphiphilic conjugated polyelectrolyte as an interfacial compatibilizer, fabricating uniform perovskite films on large-area substrates (18.4 cm2 ) and PSCs with the total active area of 6 cm2 (1 cm2 × 6 unit cells) via a single-turn solution process is successfully demonstrated. All of the unit cells exhibit highly uniform PCEs of 16.1 ± 0.9% (best PCE of 17%), which is the highest value for printable PSCs with a total active area larger than 1 cm2 .

16.
Adv Mater ; 27(43): 6870-7, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26425962

RESUMEN

Nucleation and growth processes can be effectively controlled in organic semiconductor films through a new concept of template-mediated molecular crystal seeds during the phase transition; the effective control of these processes ensures millimeter-scale crystal domains, as well as the performance of the resulting organic films with intrinsic hole mobility of 18 cm(2) V(-1) s(-1).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA