Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Gastroenterol Hepatol ; 38(12): 2206-2214, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37811601

RESUMEN

BACKGROUND AND AIM: Necroptosis is an emerging cell death pathway that allows cells to undergo "cellular suicide" in a caspase-independent manner. We investigated the fate of hepatic stellate cells (HSCs) under necroptotic stimuli. METHODS AND RESULTS: The RNA level of mixed lineage kinase domain-like protein (MLKL) is higher in patients with non-alcoholic fatty liver disease than in healthy controls. Hepatic fibrosis was significantly lower in MLKL-KO bile duct ligation (KO-BDL) mice than in wild-type-BDL mice. Necroptotic stimuli caused the death of HT-29 and U937 cells. However, necroptotic stimuli activate HSCs instead of inducing cell death. MLKL inhibitors attenuated fibrogenic changes in HSCs during necroptosis. Unlike HT-29 and U937 cells, MLKL phosphorylation and oligomerization were not observed during necroptosis in HSCs. RNA sequencing showed that NF-κB signaling-related genes were upregulated in HSCs following necroptotic stimulation. Necroptotic stimuli in HSCs increased the nuclear expression of NF-κB, which decreased after MLKL inhibitor treatment. Induction of necroptosis in HSCs led to autophagosome activation and formation, which were attenuated by MLKL inhibitor treatment. CONCLUSION: HSCs avoid necroptosis due to the absence of MLKL phosphorylation and oligomerization and are activated through autophagosome and NF-κB pathways.


Asunto(s)
Células Estrelladas Hepáticas , FN-kappa B , Humanos , Ratones , Animales , Necroptosis , Cirrosis Hepática , Muerte Celular
2.
ACS Pharmacol Transl Sci ; 6(10): 1471-1479, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37854622

RESUMEN

The pseudokinase mixed-lineage kinase domain-like protein plays a crucial role in programmed cell death via necroptosis. We developed a novel mixed-lineage kinase domain-like inhibitor, P28, which demonstrated potent necroptosis inhibition and antifibrotic effects. P28 treatment directly inhibited mixed-lineage kinase domain-like phosphorylation and oligomerization after necroptosis induction, inhibited immune cell death after necroptosis, and reduced the expression of adhesion molecules. Additionally, P28 treatment reduced the level of activation of hepatic stellate cells and the expression of hepatic fibrosis markers induced by necroptosis stimulation. Unlike the necrosulfonamide treatment, the P28 treatment did not induce cytotoxicity. Finally, the cysteine covalent bonding of P28 was confirmed by liquid chromatography-tandem mass spectrometry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA