Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 107(22): 6789-6798, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37725139

RESUMEN

Congenital cytomegalovirus (CMV) infection is a common cause of sensorineural hearing loss and neurodevelopmental impairment in newborns. However, congenital CMV infection cannot be diagnosed using samples collected more than 3 weeks after birth because testing after this time cannot distinguish between congenital infection and postnatal infection. Herein, we developed a robust loop-mediated isothermal amplification (LAMP) assay for the large-scale screening of newborns for congenital CMV infection. In contrast to conventional quantitative polymerase chain reaction (qPCR), which detects CMV within a dynamic range of 1.0 × 106 to 1.0 × 102 copies/µL, our quantitative LAMP assay (qLAMP) detects CMV within a dynamic range of 1.1 × 108 to 1.1 × 103 copies/µL. Moreover, the turnaround time for obtaining results following DNA extraction is 90 min in qPCR but only 15 min in qLamp. The colorimetric LAMP assay can also detect CMV down to 1.1 × 103 copies/µL within 30 min, irrespective of the type of heat source. Our LAMP assay can be utilized in central laboratories as an alternative to conventional qPCR for quantitative CMV detection, or for point-of-care testing in low-resource environments, such as developing countries, via colorimetric naked-eye detection. KEY POINTS: • LAMP assay enables large-scale screening of newborns for congenital CMV infection. • LAMP allows colorimetric or quantitative detection of congenital CMV infection. • LAMP assay can be used as a point-of-care testing tool in low-resource environments.

2.
Biosensors (Basel) ; 14(2)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38392010

RESUMEN

Despite a substantial increase in testing facilities during the pandemic, access remains a major obstacle, particularly in low-resource and remote areas. This constraint emphasizes the need for high-throughput potential point-of-care diagnostic tools in environments with limited resources. Loop-mediated isothermal amplification (LAMP) is a promising technique, but improvements in sensitivity are needed for accurate detection, especially in scenarios where the virus is present in low quantities. To achieve this objective, we present a highly sensitive detection approach of a dual-mode graphene-based field-effect transistor (G-FET) biosensor with LAMP. The G-FET biosensor, which has a transparent graphene microelectrode array on a glass substrate, detects LAMP products in less than 30 min using both observable color changes and Dirac point voltage measurements, even in samples with low viral concentrations. This dual-mode G-FET biosensor emerges as a potential alternative to conventional RT-PCR for severe acute respiratory syndrome-associated coronavirus (SARS-CoV)-2 detection or point-of-care testing, particularly in resource-constrained scenarios such as developing countries. Moreover, its capacity for colorimetric detection with the naked eye enhances its applicability in diverse settings.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Grafito , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas Biosensibles/métodos , Sensibilidad y Especificidad
3.
Talanta ; 265: 124841, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390671

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) envelope (E) and RNA-dependent RNA polymerase (RdRP) genes were detected via electrochemical measurements using a screen-printed carbon electrode (SPCE) (3-electrode system) coupled with a battery-operated thin-film heater based on the loop-mediated isothermal amplification (LAMP) technique. The working electrodes of the SPCE sensor were decorated with synthesized gold nanostars (AuNSs) to obtain a large surface area and improve sensitivity. The LAMP assay was enhanced using a real-time amplification reaction system to detect the optimal target genes (E and RdRP) of SARS-CoV-2. The optimized LAMP assay was performed with diluted concentrations (from 0 to 109 copies) of the target DNA using 30 µM of methylene blue as a redox indicator. Target DNA amplification was conducted for 30 min at a constant temperature using a thin-film heater, and the final amplicon electrical signals were detected based on cyclic voltammetry curves. Our electrochemical LAMP analysis of SARS-CoV-2 clinical samples showed an excellent correlation with the Ct value of real-time reverse transcriptase-polymerase chain reaction, indicating successful validation of results. A linear relationship between the peak current response and the amplified DNA was observed for both genes. The AuNS-decorated SPCE sensor with the optimized LAMP primer enabled accurate analysis of both SARS-CoV-2-positive and -negative clinical samples. Therefore, the developed device is suitable for use as a point-of-care test DNA-based sensor for the diagnosis of SARS-CoV-2.


Asunto(s)
COVID-19 , Nanoestructuras , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Azul de Metileno , Sistemas de Atención de Punto , Sensibilidad y Especificidad , Pruebas en el Punto de Atención , Técnicas de Amplificación de Ácido Nucleico/métodos , ADN , ARN Viral/análisis
4.
Talanta ; 247: 123562, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35636367

RESUMEN

We aimed to develop a portable, simple-to-use, and self-pressure-driven blood plasma-separation device that can be combined with rapid diagnostic test kits. This simple, disposable, and electrical equipment-free apparatus has been designed to separate plasma from a few microliters of blood with only hand-powered operation. The refined plasma sample is then delivered to multiple lateral flow assay kits directly connected to the device for the detection of various serological markers. The required time for all steps was just 1 min. We validated the device through multifaceted experiments. The developed multifunctional device enables to perform all blood test steps of diagnostic medical examination at the point-of-care.


Asunto(s)
Plasma , Sistemas de Atención de Punto , Pruebas en el Punto de Atención , Juego de Reactivos para Diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA