Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Cell Fact ; 15(1): 214, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-28010736

RESUMEN

BACKGROUND: Isoprene, a volatile C5 hydrocarbon, is an important platform chemical used in the manufacturing of synthetic rubber for tires and various other applications, such as elastomers and adhesives. RESULTS: In this study, Escherichia coli MG1655 harboring Populus trichocarpa isoprene synthase (PtispS) and the exogenous mevalonate (MVA) pathway produced 80 mg/L isoprene. Codon optimization and optimal expression of the ispS gene via adjustment of the RBS strength and inducer concentration increased isoprene production to 199 and 337 mg/L, respectively. To augment expression of MVA pathway genes, the MVA pathway was cloned on a high-copy plasmid (pBR322 origin) with a strong promoter (Ptrc), which resulted in an additional increase in isoprene production up to 956 mg/L. To reduce the formation of byproducts derived from acetyl-CoA (an initial substrate of the MVA pathway), nine relevant genes were deleted to generate the E. coli AceCo strain (E. coli MG1655 ΔackA-pta, poxB, ldhA, dld, adhE, pps, and atoDA). The AceCo strain harboring the ispS gene and MVA pathway showed enhanced isoprene production of 1832 mg/L in flask culture with reduced accumulation of byproducts. CONCLUSIONS: We achieved a 23-fold increase in isoprene production by codon optimization of PtispS, augmentation of the MVA pathway, and deletion of genes involved in byproduct formation.


Asunto(s)
Butadienos/metabolismo , Escherichia coli/metabolismo , Hemiterpenos/metabolismo , Ácido Mevalónico/metabolismo , Pentanos/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Escherichia coli/genética , Fermentación , Populus/enzimología , Populus/genética
2.
Biotechnol Biofuels ; 11: 210, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30061932

RESUMEN

BACKGROUND: Current petroleum-derived fuels such as gasoline (C5-C12) and diesel (C15-C22) are complex mixtures of hydrocarbons with different chain lengths and chemical structures. Isoprenoids are hydrocarbon-based compounds with different carbon chain lengths and diverse chemical structures, similar to petroleum. Thus, isoprenoid alcohols such as isopentenol (C5), geraniol (C10), and farnesol (C15) have been considered to be ideal biofuel candidates. NudB, a native phosphatase of Escherichia coli, is reported to dephosphorylate isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) into isopentenol. However, no attention has been paid to its promiscuous activity toward longer chain length (C10-C15) prenyl diphosphates. RESULTS: In this study, the promiscuous activity of NudB toward geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) was applied for the production of isoprenoid alcohol mixtures, including isopentenol, geraniol, and farnesol, and their derivatives. E. coli was engineered to produce a mixture of C5 and C15 alcohols by overexpressing NudB (dihydroneopterin triphosphate diphosphohydrolase) and IspA (FPP synthase) along with a heterologous MVA pathway, which resulted in a total of up to 1652 mg/L mixture of C5 and C15 alcohols and their derivatives. The production was further increased to 2027 mg/L by overexpression of another endogenous phosphatase, AphA, in addition to NudB. Production of DMAPP- and FPP-derived alcohols and their derivatives was significantly increased with an increase in the gene dosage of idi, encoding IPP isomerase (IDI), indicating a potential modulation of the composition of the alcohols mixture according to the expression level of IDI. When IspA was replaced with its mutant IspA*, generating GPP in the production strain, a total of 1418 mg/L of the isoprenoid mixture was obtained containing C10 alcohols as a main component. CONCLUSIONS: The promiscuous activity of NudB was newly identified and successfully used for production of isoprenoid-based alcohol mixtures, which are suitable as next-generation biofuels or commodity chemicals. This is the first successful report on high-titer production of an isoprenoid alcohol-based mixture. The engineering approaches can provide a valuable platform for production of other isoprenoid mixtures via a proportional modulation of IPP, DMAPP, GPP, and FPP syntheses.

3.
Biotechnol J ; 11(10): 1291-1297, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27440491

RESUMEN

Farnesol is a sesquiterpenoid alcohol that has important industrial and medical potential. It is usually synthesized from farnesyl diphosphate (FPP) by farnesol synthase in plants. FPP accumulation can cause up-regulation of phosphatases capable of FPP hydrolysis, resulting in farnesol production in Escherichia coli. We found that PgpB and YbjG, two integral membrane phosphatases, can hydrolyze FPP into farnesol. Overexpression of FPP synthase (IspA) and PgpB, along with a heterologous mevalonate pathway, enabled recombinant E. coli to produce 526.1 mg/L of farnesol. This result indicates that the phosphatases PgpB and YbjG can be used to construct a novel farnesol synthesis pathway for mass production in E. coli.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/enzimología , Farnesol/metabolismo , Proteínas de la Membrana/genética , Fosfatidato Fosfatasa/genética , Vías Biosintéticas , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Proteínas de la Membrana/metabolismo , Ácido Mevalónico/metabolismo , Mutagénesis Sitio-Dirigida , Fosfatidato Fosfatasa/metabolismo , Fosfatos de Poliisoprenilo/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sesquiterpenos/química , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA