RESUMEN
Organic-inorganic hybrid perovskites have attracted significant attention for optoelectronic applications due to their efficient photoconversion properties. However, grain boundaries and irregular crystal orientations in polycrystalline films remain issues. This study presents a method for producing crystalline-orientation-controlled perovskite single-crystal films using retarded solvent evaporation. It is shown that single-crystal films, grown via inverse temperature crystallization within a confined space, exhibit enhanced optoelectronic property. Using interfacial polymer layer, this method produces high-quality perovskite single-crystalline films with varying crystal orientations. Density functional theory calculations confirm favorable adsorption energies for (110) surfaces with methylammonium iodide and PbI2 terminations on poly(3-hexylthiophene), and stronger adsorption for (224) surfaces with I and methylammonium terminations on polystyrene, influenced by repulsive forces between the thiophene group and the perovskite surface. The correlation between charge transport characteristics and perovskite single-crystalline properties highlights potential advancements in perovskite optoelectronics, improving device performance and reliability.
RESUMEN
Radiative cooling is an energy-efficient technology without consuming power. Depending on their use, radiative coolers (RCs) can be designed to be either solar-transparent or solar-opaque, which requires complex spectral characteristics. Our research introduces a novel deep learning-based inverse design methodology for creating thin-film type RCs. Our deep learning algorithm determines the optimal optical constants, material volume ratios, and particle size distributions for oxide/nitride nanoparticle-embedded polyethylene films. It achieves the desired optical properties for both types of RCs through Mie Scattering and effective medium theory. We also assess the optical and thermal performance of each RCs.
RESUMEN
A primary precursor of jasmonates 12-oxo-phytodienoic acid (OPDA) is an autonomous hormone signal that activates and fine-tunes plant defense responses, as well as growth and development. However, the architecture of its signaling circuits remains largely elusive. Here we describe that OPDA signaling drives photosynthetic reductant powers toward the plastid sulfur assimilations, incorporating sulfide into cysteine. Under stressed states, OPDA -accumulated in the chloroplasts- binds and promotes cyclophilin 20-3, an OPDA receptor, to transfer electrons from thioredoxin F2, an electron carrier in the photosynthesis reaction, to serine acetyltransferase 1 (SAT1). The charge carrier (H+, e-) then splits dimeric SAT1 trimers in half to signal the recruitment of dimeric O-acetylserine(thiol)lyase B, forming a hetero-oligomeric cysteine synthase complex (CSC). The CSC formation and its metabolic products (esp., glutathione) then coordinate redox-resolved retrograde signaling from the chloroplasts to the nucleus in adjusting OPDA-responsive gene expressions such as GLUTAREDOXIN 480 and CYTOCHROME P450, and actuating defense responses against various ecological constraints such as salinity and excess oxidants, as well as mechanical wounding. We thus conclude that OPDA signaling regulates a unique metabolic switch in channeling light input into outputs that fuel/shape a multitude of physiological processes, optimizing plant growth fitness and survival capacity under a range of environmental stress cues.
RESUMEN
Inhibition of LSD1 was proposed as promising and attractive therapies for treating osteoporosis. Here, we synthesized a series of novel TCP-(MP)-Caffeic acid analogs as potential LSD1 inhibitors to assess their inhibitory effects on osteoclastogenesis by using TRAP-staining assay and try to explore the preliminary SAR. Among them, TCP-MP-CA (11a) demonstrated osteoclastic bone loss both in vitro and in vivo, showing a significant improvement in the in vivo effects compared to the LSD1 inhibitor GSK-LSD1. Additionally, we elucidated a mechanism that 11a and its precursor that 11e directly bind to LSD1/CoREST complex through FAD to inhibit LSD1 demethylation activity and influence its downstream IκB/NF-κB signaling pathway, and thus regulate osteoclastic bone loss. These findings suggested 11a or 11e as potential novel candidates for treating osteoclastic bone loss, and a concept for further development of TCP-(MP)-Caffeic acid analogs for therapeutic use in osteoporosis clinics.
Asunto(s)
Ácidos Cafeicos , Osteoclastos , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/química , Ácidos Cafeicos/síntesis química , Animales , Relación Estructura-Actividad , Ratones , Estructura Molecular , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Humanos , Osteoporosis/tratamiento farmacológico , Resorción Ósea/tratamiento farmacológico , Células RAW 264.7 , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis químicaRESUMEN
PURPOSE: This study aimed to develop a novel exfoliating material with high efficacy and low irritation by synthesizing the Mandelic acid_Carnitine ion pairing complex (M_C complex) and evaluating its exfoliating properties. Additionally, the study assessed the skin improvement effects of the M_C complex through clinical evaluations. METHODS: The M_C complex was synthesized in a 1:1 molar ratio of Mandelic acid and Carnitine. Structural characterization was performed using dynamic light scattering and Fourier-transform infrared spectroscopy. Exfoliating efficacy was evaluated on porcine skin, and clinical assessments were conducted on human subjects to measure various skin improvement parameters. RESULTS: The formation of the M_C complex was confirmed through particle size analysis, zeta-potential measurements, and FT-IR spectroscopy. The M_C complex demonstrated superior exfoliating efficacy compared to Mandelic acid alone, especially at pH 4.5. Clinical evaluations showed significant improvements in blackheads, whiteheads, pore volume, depth, density, count, and affected area, as well as skin texture. No adverse reactions were observed. CONCLUSION: The M_C complex exhibits high exfoliating efficacy and minimal irritation, making it a promising cosmetic ingredient for improving skin health. These findings support its potential as a low-irritation exfoliating material under mildly acidic conditions, contributing to overall skin health enhancement.
Asunto(s)
Carnitina , Cosméticos , Ácidos Mandélicos , Ácidos Mandélicos/química , Ácidos Mandélicos/farmacología , Humanos , Carnitina/farmacología , Carnitina/química , Animales , Porcinos , Cosméticos/farmacología , Cosméticos/química , Femenino , Adulto , Piel/efectos de los fármacos , Piel/química , Masculino , Persona de Mediana Edad , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
PURPOSE: The study explored the enhanced skin moisturizing capabilities and moisture retention effects achieved by forming a polyion complex using sulfated glycosaminoglycan (GAG), specifically chondroitin sulfate (CS), and amino acids (AA) such as glutamine (Q) and arginine (R). The overall hydration effect of this CS-AA complex was examined. METHODS: After analyzing the CS-AA polyion complex structure using spectroscopic methods, the ex vivo moisture retention ability was assessed under dry conditions using porcine skin samples. Additionally, the efficacy of the CS-AA polyion complex in reducing transepidermal water loss (TEWL) and improving skin hydration was evaluated on human subjects using a digital evaporimeter and a corneometer, respectively. RESULTS: Validating a systematic reduction in particle size, the following order was observed: CS > CS/AA simple mixture > CS-AA complex based on dynamic light scattering (DLS) and transmission electron microscopy (TEM) analysis. Furthermore, observations revealed that the CS-AA complex exhibits negligible surface charge. Additionally, Fourier-transform infrared spectroscopy (FT-IR) analysis demonstrated a distinct peak shift in the complex, confirming the successful formation of the CS-AA complex. Subsequently, the water-holding effect through porcine skin was assessed, revealing a notable improvement in moisture retention (weight loss) for the CS-Q complex: 40.6% (1 h), 20.5% (2 h), and 18.7% (4 h) compared to glycerin. Similarly, the CS-R complex demonstrated enhancements of 50.2% (1 h), 37.5% (2 h), and 33% (4 h) compared to glycerin. Furthermore, TEWL improvement efficacy on human skin demonstrated approximately 25% improvement for both the CS-Q complex and CS-R complex, surpassing the modest 12.5% and 18% improvements witnessed with water and glycerin applications, respectively. Finally, employing a corneometer, hydration changes in the skin were monitored over 4 weeks. Although CS alone exhibited nominal alterations, the CS-Q complex and CS-R complex showed a significant increase in moisture levels after 4 weeks of application. CONCLUSION: In this study, polyion complexes were successfully formed between CS, a sulfated GAG, and AA. Comparisons with glycerin, a well-known moisturizing agent, confirmed that the CS-AA complex exhibits superior moisturizing effects in various aspects. These findings suggest that the CS-AA complex is a more effective ingredient than CS or AA alone in terms of efficacy.
Asunto(s)
Sulfatos de Condroitina , Cosméticos , Pérdida Insensible de Agua , Humanos , Animales , Porcinos , Pérdida Insensible de Agua/efectos de los fármacos , Cosméticos/farmacología , Cosméticos/química , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacología , Femenino , Piel/química , Piel/efectos de los fármacos , Piel/metabolismo , Adulto , Aminoácidos/química , Aminoácidos/farmacología , Emolientes/farmacología , Emolientes/administración & dosificación , Emolientes/química , Polímeros/farmacología , Polímeros/química , Glutamina/farmacología , PolielectrolitosRESUMEN
This paper proposes a heuristic association algorithm between access points (APs) and user equipment (UE) in user-centric cell-free massive multiple-input-multiple-output (MIMO) systems, specifically targeting scenarios where UEs share the same frequency and time resources. The proposed algorithm prevents overserving APs and ensures the connectivity of all UEs, even when the number of UEs is significantly greater than the number of APs. Additionally, we assume the use of low-resolution analog-to-digital converters (ADCs) to reduce fronthaul capacity. While realistic massive access scenarios, such as those in Internet-of-Things (IoT) environments, often involve hundreds or thousands of UEs per AP using multiple access techniques to allocate different frequency and time resources, our study focuses on scenarios where UEs within each AP cluster share the same frequency and time resources to highlight the impact of pilot contamination in dense network environments. The proposed algorithm is validated through simulations, confirming that it guarantees the connection of all UEs and prevents overserving APs. Furthermore, we analyze the required fronthaul capacity based on quantization bits and confirm that the proposed algorithm outperforms existing algorithms in terms of SE and average SE performance for UEs.
RESUMEN
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a promising tool for studying cardiac physiology and drug responses. However, their use is largely limited by an immature phenotype and lack of high-throughput analytical methodology. In this study, we developed a high-throughput testing platform utilizing hPSC-CMs to assess the cardiotoxicity and effectiveness of drugs. Following an optimized differentiation and maturation protocol, hPSC-CMs exhibited mature CM morphology, phenotype, and functionality, making them suitable for drug testing applications. We monitored intracellular calcium dynamics using calcium imaging techniques to measure spontaneous calcium oscillations in hPSC-CMs in the presence or absence of test compounds. For the cardiotoxicity test, hPSC-CMs were treated with various compounds, and calcium flux was measured to evaluate their effects on calcium dynamics. We found that cardiotoxic drugs withdrawn due to adverse drug reactions, including encainide, mibefradil, and cetirizine, exhibited toxicity in hPSC-CMs but not in HEK293-hERG cells. Additionally, in the effectiveness test, hPSC-CMs were exposed to ATX-II, a sodium current inducer for mimicking long QT syndrome type 3, followed by exposure to test compounds. The observed changes in calcium dynamics following drug exposure demonstrated the utility of hPSC-CMs as a versatile model system for assessing both cardiotoxicity and drug efficacy. Overall, our findings highlight the potential of hPSC-CMs in advancing drug discovery and development, which offer a physiologically relevant platform for the preclinical screening of novel therapeutics.
Asunto(s)
Diferenciación Celular , Evaluación Preclínica de Medicamentos , Miocitos Cardíacos , Células Madre Pluripotentes , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Evaluación Preclínica de Medicamentos/métodos , Diferenciación Celular/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Fármacos Cardiovasculares/farmacología , Calcio/metabolismo , Cardiotoxicidad , Ensayos Analíticos de Alto Rendimiento/métodos , Células HEK293 , Señalización del Calcio/efectos de los fármacosRESUMEN
Genome editing has potential for the targeted correction of germline mutations. Here we describe the correction of the heterozygous MYBPC3 mutation in human preimplantation embryos with precise CRISPR-Cas9-based targeting accuracy and high homology-directed repair efficiency by activating an endogenous, germline-specific DNA repair response. Induced double-strand breaks (DSBs) at the mutant paternal allele were predominantly repaired using the homologous wild-type maternal gene instead of a synthetic DNA template. By modulating the cell cycle stage at which the DSB was induced, we were able to avoid mosaicism in cleaving embryos and achieve a high yield of homozygous embryos carrying the wild-type MYBPC3 gene without evidence of off-target mutations. The efficiency, accuracy and safety of the approach presented suggest that it has potential to be used for the correction of heritable mutations in human embryos by complementing preimplantation genetic diagnosis. However, much remains to be considered before clinical applications, including the reproducibility of the technique with other heterozygous mutations.
Asunto(s)
Proteínas Portadoras/genética , Embrión de Mamíferos/metabolismo , Edición Génica/métodos , Mutación/genética , Adulto , Alelos , Blastocisto/metabolismo , Blastocisto/patología , División Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Roturas del ADN de Doble Cadena , Embrión de Mamíferos/patología , Marcación de Gen , Prueba de Complementación Genética , Heterocigoto , Homocigoto , Humanos , Masculino , Mosaicismo , Reparación del ADN por Recombinación/genética , Fase S , Moldes Genéticos , Cigoto/metabolismo , Cigoto/patologíaRESUMEN
BACKGROUND: Salicylic acid has been used as an anti-acne agent with its comedolytic property and antimicrobial activity. However, there is a limit to use for leave-on cosmetics because of the transient skin irritation and low efficacy at neutral pH condition. We prepared a salicylic acid-based ionic pair with L -carnitine (we named, IP-BHA) overcoming the limitation of salicylic acid. We examined the effect of IP-BHA as well as the combination effect with magnolol, a bioactive organic lignan, in order to clarify their efficacy as anti-acne agents. METHODS: After verifying the structure of IP-BHA, we confirmed anti-acne activities including the regulation of exfoliation, lipogenesis, bacterial growth, and inflammation with IP-BHA and/or magnolol. RESULTS: The antibacterial activity of IP-BHA and magnolol was evaluated by determining the minimum antibacterial inhibitory concentration. Magnolol showed strong activity against Cutibacterium acnes, which was better than a medical antibiotic acne drug, clindamycin. The combined application with IP-BHA was more effective in antibacterial activity by 2.5 times. It was confirmed that testosterone-induced lipogenesis was significantly inhibited by treatment with IP-BHA and magnolol, while single treatment had no significant inhibitory effect. Interestingly, MMP-1 and VEGF were induced by C. acnes lysate in human keratinocytes. We found that these inflammatory molecules were completely inhibited by combined application of IP-BHA and magnolol. Through ex vivo test, the dose-dependent exfoliation effect of IP-BHA was confirmed at pH 5.5, and the synergic exfoliation effect was shown in the combined application of IP-BHA and magnolol. When topically applied, the emulsion containing IP-BHA and magnolol relieved the sodium dodecyl sulfate-induced erythema and improved inflamed acne with papule and pustule. CONCLUSION: Our data demonstrate that the ionic paired salicylic acid with L -carnitine can overcome the limitations of salicylic acid at low concentration and natural skin pH. Based on the dual administration effects, we suggest that IP-BHA and magnolol may be the potential agent for acne by improving inflammatory skin condition.
Asunto(s)
Acné Vulgar , Lignanos , Humanos , Carnitina/uso terapéutico , Lipogénesis , Acné Vulgar/tratamiento farmacológico , Lignanos/farmacología , Lignanos/uso terapéutico , Ácido Salicílico/uso terapéutico , Antibacterianos/farmacología , InflamaciónRESUMEN
Reconfigurable intelligent surface (RIS) has emerged as a promising technology to enhance the spectral efficiency of wireless communication systems. However, if there are many obstacles between the RIS and users, a single RIS may not provide sufficient performance. For this reason, a double RIS-aided communication system is proposed in this paper. However, this system also has a problem: the signal is attenuated three times due to the three channels created by the double RIS. To overcome these attenuations, an active RIS is proposed in this paper. An active RIS is almost the same as a conventional RIS, except for the included amplifier. Comprehensively, the proposed system overcomes various obstacles and attenuations. In this paper, an active RIS is applied to the second RIS. To reduce the power consumption of active elements, a partially active RIS is applied. To optimize the RIS elements, the sum of the covariance matrix is found by using channels related to each RIS, and the right singular vector is exploited using singular value decomposition for the sum of the covariance matrix. Then, the singular value of the sum of the covariance value is checked to determine which element is the active element. Simulation results show that the proposed system has better sum rate performance compared to a single RIS system. Although it has a lower sum rate performance compared to a double RIS with fully active elements, the proposed system will be more attractive in the future because it has much better energy efficiency.
RESUMEN
Epigenetic regulators are involved in osteoclast differentiation. This study proposes that the inhibitors of epigenetic regulators could be effective in the treatment of osteoporosis. This study identified GSK2879552, a lysine-specific histone demethylase 1 (LSD1) inhibitor, as a candidate for the treatment of osteoporosis from epigenetic modulator inhibitors. We investigate the function of LSD1 during RANKL-induced osteoclast formation. LSD1 small-molecule inhibitors effectively inhibit the RANKL-induced osteoclast differentiation in a dose-dependent manner. LSD1 gene knockout in macrophage cell line Raw 264.7 also inhibits RANKL-mediated osteoclastogenesis. LSD1-inhibitor-treated primary macrophage cells and LSD1 gene knockout Raw 264.7 cells failed to show actin ring formation. LSD1 inhibitors prevent the expression of RANKL-induced osteoclast-specific genes. They also downregulated the protein expression of osteoclast-related markers in osteoclastogeneses, such as Cathepsin K, c-Src, and NFATc1. Although LSD1 inhibitors were shown to reduce the in vitro demethylation activity of LSD1, they did not modulate the methylation of Histone 3 K4 and K9 during osteoclastogenesis. The ovariectomy (OVX)-induced osteoporosis model revealed that GSK2879552 slightly restores OVX-induced cortical bone loss. LSD1 can be employed as a positive regulator to promote osteoclast formation. Hence, inhibition of LSD1 activities is a potential target for preventing bone diseases characterized by excessive osteoclast activities.
Asunto(s)
Resorción Ósea , Histona Demetilasas , Osteoclastos , Osteoporosis , Femenino , Resorción Ósea/metabolismo , Diferenciación Celular , Lisina/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Ovariectomía , Ligando RANK/metabolismo , Ratones , Histona Demetilasas/efectos de los fármacos , Histona Demetilasas/metabolismo , AnimalesRESUMEN
Osteoporosis is a common skeletal disease; however, effective pharmacological treatments still need to be discovered. This study aimed to identify new drug candidates for the treatment of osteoporosis. Here, we investigated the effect of EPZ compounds, protein arginine methyltransferase 5 (PRMT5) inhibitors, on RANKL-induced osteoclast differentiation via molecular mechanisms by in vitro experiments. EPZ015866 attenuated RANKL-induced osteoclast differentiation, and its inhibitory effect was more significant than EPZ015666. EPZ015866 suppressed the F-actin ring formation and bone resorption during osteoclastogenesis. In addition, EPZ015866 significantly decreased the protein expression of Cathepsin K, NFATc1, and PU.1 compared with the EPZ015666 group. Both EPZ compounds inhibited the nuclear translocation of NF-κB by inhibiting the dimethylation of the p65 subunit, which eventually prevented osteoclast differentiation and bone resorption. Hence, EPZ015866 may be a potential drug candidate for the treatment of osteoporosis.
Asunto(s)
Resorción Ósea , Osteoporosis , Humanos , Resorción Ósea/metabolismo , FN-kappa B/metabolismo , Osteoclastos/metabolismo , Osteoporosis/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Transducción de Señal , Ligando RANKRESUMEN
Biocontrol strategies are gaining tremendous attention in insect pest management, such as controlling termite damage, due to the growing awareness of the irreparable harm caused by the continuous use of synthetic pesticides. This study examines the proteolytic and chitinolytic activities of Bacillus velezensis CE 100 and its termiticidal effect through cuticle degradation. The proteolytic and chitinolytic activities of B. velezensis CE 100 systematically increased with cell growth to the respective peaks of 68.3 and 128.3 units/mL after seven days of inoculation, corresponding with the highest cell growth of 16 × 107 colony-forming units (CFU)/mL. The in vitro termiticidal assay showed that B. velezensis CE 100 caused a rapid and high rate of termite mortality, with a median lethal time (LT50) of >1 h and the highest mortality rates of 91.1% and 92.2% recorded at 11 h and 12 h in the bacterial broth culture and crude enzyme fraction, respectively. In addition to broken setae and deformed sockets, termites treated with the bacterial broth culture exhibited degraded epicuticles, while the crude enzyme fraction caused severe disintegration of both the epicuticle and endocuticle. These results indicate the tremendously higher potential of B. velezensis CE 100 in the biological control of subterranean termites compared to the previously used entomopathogenic bacteria.
Asunto(s)
Bacillus , Isópteros , Animales , Bacillus/metabolismo , Insectos , República de CoreaRESUMEN
PURPOSE: Make-up clumps, bumps and collapses are the three factors that determine how well make-up has been performed. The purpose of this study is to reduce the three factors mentioned above by using amphiphilic substances to increase the affinity between the skin and the make-up layer. In addition, it aims to evaluate the improvement of the make-up layer by developing an objective make-up layer evaluation method. METHODS: Experiments were performed in an attempt to increase the affinity between the skin and the make-up layer by minimizing the difference in surface energy between the two. Multiple types of artificial skin (leather and bio-skin) were used and treated to form the liquid foundation layer. Qualitative evaluation of the make-up layer was conducted by analyzing the surface, cross-section, and fracture area of the make-up layer, using the evaluation method proposed in this study. RESULTS: After applying this method and taking measurements by 3D surface analysis, the surface roughness of the make-up layer reduced by 46%, and the maximum thickness of the make-up layer reduced by about 50% in comparison with the control group (method not applied). In the case of the make-up layer to which this method was applied, two-dimensional cross-sectional Scanning Electron Microscope (SEM) image analysis confirmed that agglomeration was reduced, and the thickness of the make-up layer was also reduced by an average of 54%. According to this result, the technique of increasing the affinity between the skin and the make-up layer reduces the level of aggregation of make-up and encourages the formation of a uniform and thin make-up layer. Also, the fracture area after motion simulation was reduced by 33%. These results indicate that the method of increasing the affinity between skin/make-up membranes positively affects the formation of a uniform make-up layer. CONCLUSION: Increasing the affinity by reducing the surface energy between the skin and the make-up layer plays an important role in forming a thin and uniform make-up layer by improving the problems of lifting, agglomeration, and collapse of the make-up. In addition, it has been confirmed that through this method, the quality of consumer experience related to make-up satisfaction can be improved. The results show that objective analyses of make-up help the understanding of the quality of consumer experience on make-up.
Asunto(s)
Piel Artificial , Piel , Estudios Transversales , Dermis , HumanosRESUMEN
Osteoclasts are derived from hematopoietic stem cells. Monocyte preosteoclasts obtain resorbing activity via cell-cell fusion to generate multinucleated cells. However, the mechanisms and molecules involved in the fusion process are poorly understood. In this study, we performed RNA sequencing with single nucleated cells (SNCs) and multinucleated cells (MNCs) to identify the fusion-specific genes. The SNCs and MNCs were isolated under the same conditions during osteoclastogenesis with the receptor activator of nuclear factor-κB ligand (RANKL) administration. Based on this analysis, the expression of seven genes was found to be significantly increased in MNCs but decreased in SNCs, compared to that in bone marrow-derived macrophages (BMMs). We then generated knockout macrophage cell lines using a CRISPR-Cas9 genome-editing tool to examine their function during osteoclastogenesis. Calcrl-, Marco-, or Ube3a-deficient cells could not develop multinucleated giant osteoclasts upon RANKL stimulation. However, Tmem26-deficient cells fused more efficiently than control cells. Our findings demonstrate that Calcrl, Marco, and Ube3a are novel determinants of osteoclastogenesis, especially with respect to cell fusion, and highlight potential targets for osteoporosis therapy.
Asunto(s)
Osteoclastos , Ligando RANK , Diferenciación Celular/genética , Fusión Celular , Células Gigantes/metabolismo , Células Madre Hematopoyéticas/metabolismo , Macrófagos/metabolismo , Osteoclastos/metabolismo , Ligando RANK/genética , Ligando RANK/metabolismoRESUMEN
Vinylene-linked two-dimensional conjugated covalent organic frameworks (V-2D-COFs), belonging to the class of two-dimensional conjugated polymers, have attracted increasing attention due to their extended π-conjugation over the 2D backbones associated with high chemical stability. The Knoevenagel polycondensation has been demonstrated as a robust synthetic method to provide cyano (CN)-substituted V-2D-COFs with unique optoelectronic, magnetic, and redox properties. Despite the successful synthesis, it remains elusive for the relevant polymerization mechanism, which leads to relatively low crystallinity and poor reproducibility. In this work, we demonstrate the novel synthesis of CN-substituted V-2D-COFs via the combination of Knoevenagel polycondensation and water-assisted dynamic Michael-addition-elimination, abbreviated as KMAE polymerization. The existence of C=C bond exchange between two diphenylacrylonitriles (M1 and M6) is firstly confirmed via in situ high-temperature NMR spectroscopy study of model reactions. Notably, the intermediate M4 synthesized via Michael-addition can proceed the Michael-elimination quantitatively, leading to an efficient C=C bond exchange, unambiguously confirming the dynamic nature of Michael-addition-elimination. Furthermore, the addition of water can significantly promote the reaction rate of Michael-addition-elimination for highly efficient C=C bond exchange within 5â mins. As a result, the KMAE polymerization provides a highly efficient strategy for the synthesis of CN-substituted V-2D-COFs with high crystallinity, as demonstrated by four examples of V-2D-COF-TFPB-PDAN, V-2D-COF-TFPT-PDAN, V-2D-COF-TFPB-BDAN, and V-2D-COF-HATN-BDAN, based on the simulated and experimental powder X-ray diffraction (PXRD) patterns as well as N2 -adsorption-desorption measurements. Moreover, high-resolution transmission electron microscopy (HR-TEM) analysis shows crystalline domain sizes ranging from 20 to 100â nm for the newly synthesized V-2D-COFs.
RESUMEN
All-solid-state batteries (ASSBs) have lately received enormous attention for electric vehicle applications because of their exceptional stability by engaging all-solidified cell components. However, there are many formidable hurdles such as low ionic conductivity, interface instability, and difficulty in the manufacturing process, for its practical use. Recently, carbon, one of the representative conducting agents, turns out to largely participate in side reactions with the solid electrolyte, which finally leads to the formation of insulating side products at the interface. Although the battery community mentioned that parasitic reactions are presumably attributed to carbon itself or the generation of electronic conducting paths lowering the kinetic barrier for reactions, the underlying origin for such reactions as well as appropriate solutions have not been provided yet. In this study, for the first time, it is verified that the functional group on carbon is an origin for causing negative effects on interfacial stability and a graphitized hollow nanocarbon as a promising solution for improving-electrochemical performance is introduced. This work offers an invaluable lesson that a relatively minor part, such as a conducting agent, in ASSBs sometimes gives more positive impact on improving electrochemical performance than huge efforts for resolving other parts.
RESUMEN
Cardiac remodeling characterized by cardiac fibrosis is a pathologic process occurring after acute myocardial infarction. Fibrosis can be ameliorated by interferon-gamma (IFN-γ), which is a soluble cytokine showing various effects such as anti-fibrosis, apoptosis, anti-proliferation, immunomodulation, and anti-viral activities. However, the role of IFN-γ in cardiac myofibroblasts is not well established. Therefore, we investigated the anti-fibrotic effects of IFN-γ in human cardiac myofibroblasts (hCMs) in vitro and whether indoleamine 2,3-dioxygenase (IDO), induced by IFN-γ and resulting in cell cycle arrest, plays an important role in regulating the biological activity of hCMs. After IFN-γ treatment, cell signaling pathways and DNA contents were analyzed to assess the biological activity of IFN-γ in hCMs. In addition, an IDO inhibitor (1-methyl tryptophan; 1-MT) was used to assess whether IDO plays a key role in regulating hCMs. IFN-γ significantly inhibited hCM proliferation, and IFN-γ-induced IDO expression caused cell cycle arrest in G0/G1 through tryptophan depletion. Moreover, IFN-γ treatment gradually suppressed the expression of α-smooth muscle actin. When IDO activity was inhibited by 1-MT, marked apoptosis was observed in hCMs through the induction of interferon regulatory factor, Fas, and Fas ligand. Our results suggest that IFN-γ plays key roles in anti-proliferative and anti-fibrotic activities in hCMs and further induces apoptosis via IDO inhibition. In conclusion, co-treatment with IFN-γ and 1-MT can ameliorate fibrosis in cardiac myofibroblasts through apoptosis.