Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Biochem ; 120(1): 928-939, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30160785

RESUMEN

Ferroptosis is considered genetically and biochemically distinct from other forms of cell death. In this study, we examined whether ferroptosis shares cell death pathways with other types of cell death. When human colon cancer HCT116, CX-1, and LS174T cells were treated with ferroptotic agents such as sorafenib (SRF), erastin, and artesunate, data from immunoblot assay showed that ferroptotic agents induced endoplasmic reticulum (ER) stress and the ER stress response-mediated expression of death receptor 5 (DR5), but not death receptor 4. An increase in the level of DR5, which is activated by binding to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and initiates apoptosis, was probably responsible for synergistic apoptosis when cells were treated with ferroptotic agent in combination with TRAIL. This collateral effect was suppressed in C/EBP (CCAAT-enhancer-binding protein)-homologous protein (CHOP)-deficient mouse embryonic fibroblasts or DR5 knockdown HCT116 cells, but not in p53-deficient HCT116 cells. The results from in vitro studies suggest the involvement of the p53-independent CHOP/DR5 axis in the synergistic apoptosis during the combinatorial treatment of ferroptotic agent and TRAIL. The synergistic apoptosis and regression of tumor growth were also observed in xenograft tumors when SRF and TRAIL were administered to tumor-bearing mice.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias del Colon/metabolismo , Ferroptosis/efectos de los fármacos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Artesunato/farmacología , Neoplasias del Colon/patología , Sinergismo Farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Técnicas de Silenciamiento del Gen , Células HCT116 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Piperazinas/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Sorafenib/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Factor de Transcripción CHOP/metabolismo , Carga Tumoral/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Biochem Biophys Res Commun ; 508(1): 1-8, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30409427

RESUMEN

This study demonstrates that combined treatment with subtoxic doses of Codium extracts (CE), a flavonoid found in many fruits and vegetables, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), induces apoptosis in TRAIL-resistant colorectal cancer (CRC) cells. Effective induction of apoptosis by combined treatment with CE and TRAIL was not blocked by Bcl-xL overexpression, which is known to confer resistance to various chemotherapeutic agents. While TRAIL-mediated proteolytic processing of procaspase-3 was partially blocked in various CRC cells treated with TRAIL alone, co-treatment with CE efficiently recovered TRAIL-induced caspase activation. We observed that CE treatment of CRC cells did not change the expression of anti-apoptotic proteins and pro-apoptotic proteins, including death receptors (DR4 and DR5). However, CE treatment markedly reduced the protein level of the short form of the cellular FLICE-inhibitory protein (c-FLIPS), an inhibitor of caspase-8, via proteasome-mediated degradation. Collectively, these observations show that CE recovers TRAIL sensitivity in various CRC cells via down-regulation of c-FLIPS.


Asunto(s)
Chlorophyta , Neoplasias Colorrectales/tratamiento farmacológico , Fitoterapia , Ligando Inductor de Apoptosis Relacionado con TNF/administración & dosificación , Apoptosis/efectos de los fármacos , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/antagonistas & inhibidores , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Línea Celular Tumoral , Chlorophyta/química , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Regulación hacia Abajo/efectos de los fármacos , Células HCT116 , Células HT29 , Humanos , Extractos Vegetales/administración & dosificación , Extractos Vegetales/toxicidad , ARN Interferente Pequeño/genética , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Algas Marinas/química , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos
3.
BMC Cancer ; 19(1): 739, 2019 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-31351462

RESUMEN

BACKGROUND: Genipin is a compound derived from gardenia fruit extract. Although Genipin has anti-tumor effects in various cancers, its effect and mechanism in gastric cancer remain unclear. Here, we investigated the relationship between the anticancer effect of Genipin and signal transducer and activator of transcription (Stat3)/myeloid cell leukemia-1 (Mcl-1) in human gastric cancers. METHODS: MTT assays were performed to determine the cell viability of gastric cancer and gastric epithelial cell lines (AGS, MKN45, SNU638, MKN74, HFE-145). A TUNEL assay and Western blotting were carried out to investigate apoptosis. Stat3 activity was measured by proteome profiler phospho kinase array, immunofluorescence and immunoblotting. Mitochondria function was monitored with an XF24 analyzer and by flow cytometry, confocal microscopy using fluorescent probes for general mitochondrial membrane potential (MMP). RESULTS: Genipin induced apoptosis in gastric cancer cells, including AGS and MKN45 cells. Genipin also reduced Mcl-1 mRNA and protein levels. Furthermore, we found that phosphorylation of Stat3 is regulated by Genipin. Additionally, the protein level of phospho Janus kinase 2 (JAK2) was decreased by Genipin treatment, indicating that the Stat3/JAK2/Mcl-1 pathway is suppressed by Genipin treatment in gastric cancer cells. Mcl-1 is closely related to mitochondrial function. These findings suggest that Genipin contributes to the collapse of mitochondrial functions like MMP. CONCLUSIONS: Genipin induced apoptosis by suppressing the Stat3/Mcl-1 pathway and led to mitochondrial dysfunction. Our results reveal a novel mechanism for the anti-cancer effect of Genipin in gastric cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Regulación hacia Abajo , Iridoides/farmacología , Mitocondrias/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias Gástricas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Janus Quinasa 2/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/patología , Transfección
4.
EMBO Rep ; 18(1): 150-168, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27993939

RESUMEN

Although proteasome inhibitors (PIs) are used as anticancer drugs to treat various cancers, their relative therapeutic efficacy on stem cells vs. bulk cancers remains unknown. Here, we show that stem cells derived from gliomas, GSCs, are up to 1,000-fold more sensitive to PIs (IC50, 27-70 nM) compared with their differentiated controls (IC50, 47 to ¼100 µM). The stemness of GSCs correlates to increased ubiquitination, whose misregulation readily triggers apoptosis. PI-induced apoptosis of GSCs is independent of NF-κB but involves the phosphorylation of c-Jun N-terminal kinase as well as the transcriptional activation of endoplasmic reticulum (ER) stress-associated proapoptotic mediators. In contrast to the general notion that ER stress-associated apoptosis is signaled by prolonged unfolded protein response (UPR), GSC-selective apoptosis is instead counteracted by the UPR ATF3 is a key mediator in GSC-selective apoptosis. Pharmaceutical uncoupling of the UPR from its downstream apoptosis sensitizes GSCs to PIs in vitro and during tumorigenesis in mice. Thus, a combinational treatment of a PI with an inhibitor of UPR-coupled apoptosis may enhance targeting of stem cells in gliomas.


Asunto(s)
Glioma/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/patología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Modelos Biológicos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas , Ubiquitinación/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Pharmacol Biochem Behav ; 235: 173687, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38016594

RESUMEN

Diclazepam, a designer benzodiazepine, is a lesser-known novel anxiolytic substance and a structural analog of diazepam. Although several case studies have reported the adverse effects of diclazepam, their potential impacts remain unknown. Therefore, this study aimed to determine the effects of diclazepam in rodents using drug discrimination, locomotor activity, self-administration (SA), and conditioned place preference (CPP) tests. Sprague-Dawley rats (male, 8 weeks old, weighing 220-450 g, n = 12 per group) and C57BL/6 mice (male, 7 weeks old, weighing 20-25 g, n = 7-8 per group) were administered alprazolam, morphine, and diclazepam. Diclazepam fully elicited alprazolam-appropriate dose-dependent lever responses (>80 %) similar to those of alprazolam. In rats administered 0.5 mg/kg of morphine, a partial substitution (80 %-20 %) was observed. Mice receiving intraperitoneal injections of diclazepam (0.05, 0.2, and 2 mg/kg) showed decreased locomotor activity. In the SA experiment, mice that self-administered intravenous diclazepam (2 µg/kg/infusion) showed significantly higher infusion and active lever responses compared to the vehicle group. No statistically significant rewarding effects of diclazepam at the doses of 0.2 and 2 mg/kg evaluated using the CPP paradigm were found. In conclusion, diclazepam has reinforcing effects and shares the interoceptive effects of alprazolam. Therefore, legal restrictions on the use of diclazepam should be carefully considered.


Asunto(s)
Alprazolam , Benzodiazepinas , Roedores , Ratas , Ratones , Masculino , Animales , Alprazolam/farmacología , Ratas Sprague-Dawley , Ratones Endogámicos C57BL , Diazepam/farmacología , Morfina/farmacología , Relación Dosis-Respuesta a Droga
9.
Behav Neurosci ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780587

RESUMEN

An N-protected methylenedioxymethamphetamine (MDMA), N-tert-butoxycarbonyl-3,4-methylenedioxymethamphetamine (t-BOC-3,4-MDMA), contains tert-butoxycarbonyl and can remain undetected in the illicit drug market. It is a new type of precursor substance that is not a chemical intermediate and can be converted into a controlled substance, MDMA, by deprotection of the N-tert-butoxycarbonyl group. Categorization of this chemical into a precursor or psychotropic substance is an issue because it is an unprecedented precursor that could have misuse potential. Although MDMA causes rewarding and reinforcing effect through dopaminergic transmission, the misuse potential of t-BOC-3,4-MDMA has not yet been characterized. Here, we aim to evaluate the misuse potential of t-BOC-3,4-MDMA. The response to the drug at a dose of 5 mg/kg was determined by a climbing test, and its rewarding and reinforcing properties were assessed through conditioned place preference and self-administration tests. In the conditioned place preference test, intraperitoneal administration of t-BOC-3,4-MDMA (5 mg/kg) significantly altered place preference in mice. In the self-administration models, t-BOC-3,4-MDMA induced drug-taking behavior at the dose of 0.5 mg/kg/infusion (intravenous) during 2 hr sessions under fixed-ratio schedules in mice. In addition, microdialysis experiments verified that t-BOC-3,4-MDMA impacted the dopamine levels of the brain (striatum) of rats. These experimental results indicate that t-BOC-3,4-MDMA has a potential for misuse. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

10.
Cancers (Basel) ; 14(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35804815

RESUMEN

Our team has previously reported a series of quinazoline-based lapatinib hybrids as potent kinase-targeting anticancer agents. Among them, AF8c showed a relatively safe profile in colorectal cancer (CRC) cells. In this study, we delineate a novel anticancer activity of AF8c in CRC cells. AF8c mediated p53-dependent apoptosis of CRC cells via the generation of endoplasmic reticulum (ER) stress and reactive oxygen species (ROS), as well as activation of nuclear respiratory factor 2 alpha subunit (Nrf2) and death receptor 5 (DR5), among others. The silencing of DR5 attenuated the expression levels of Nrf2 and partially inhibited AF8c-induced apoptosis. Additionally, upregulation of Nrf2 by AF8c evoked apoptosis through a decrease in antioxidant levels. Treatment of a CRC mice model with AF8c also resulted in the upregulation of DR5, Nrf2, and CHOP proteins, subsequently leading to a significant decrease in tumor burden. In comparison with lapatinib, AF8c showed higher cellular antiproliferative activity at the tested concentrations in CRC cells and synergized TRAIL effects in CRC cells. Overall, our results suggest that AF8c-induced apoptosis may be associated with DR5/Nrf2 activation through ER stress and ROS generation in CRC cells. These findings indicate that AF8c represents a promising polypharmacological molecule for the treatment of human CRC.

11.
Cancers (Basel) ; 13(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830821

RESUMEN

To assess the effect of Cannabidiol (CBD) on the angiogenesis and stemness of breast cancer cells as well as proliferation. Methods: mRNA level and the amount of protein of vascular endothelial growth factor (VEGF) were determined by qRT-PCR and ELISA. The angiogenic potential of breast cancer cells under hypoxic conditions was identified by the HUVEC tube formation assay. The degradation of HIF-1α by CBD and the Src/von Hippel-Lindau tumor suppressor protein (VHL) interaction were assessed by a co-immunoprecipitation assay and Western blotting. To identify the stemness of mamospheres, they were evaluated by the sphere-forming assay and flow cytometry. Results: CBD can suppress angiogenesis and stem cell-like properties of breast cancer through Src/VHL/HIF-1α signaling. CBD may potentially be utilized in the treatment of refractory or recurrent breast cancer.

12.
Cell Death Differ ; 27(2): 676-694, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31278361

RESUMEN

Disabled tumor suppressor genes and hyperactive oncogenes greatly contribute to cell fates during cancer development because of their genetic alterations such as somatic mutations. However, little is known about how tumor suppressor genes react to diverse oncogenes during tumor progression. Our previous study showed that RUNX3 inhibits invasiveness by preventing vascular endothelial growth factor secretion and suppressed endothelial cell growth and tube formation in colorectal cancer (CRC). Hedgehog signaling is crucial for the physiological maintenance and self-renewal of stem cells, and its deregulation is responsible for their tumor development. The mechanisms that inhibit this pathway during proliferation remain poorly understood. Here, we found that the tumor suppressor RUNX3 modulates tumorigenesis in response to cancer cells induced by inhibiting oncogene GLI1 ubiquitination. Moreover, we demonstrated that RUNX3 and GLI1 expression were inversely correlated in CRC cells and tissues. We observed a direct interaction between RUNX3 and GLI1, promoting ubiquitination of GLI1 at the intracellular level. Increased ubiquitination of GLI1 was induced by the E3 ligase ß-TrCP. This novel RUNX3-dependent regulatory loop may limit the extent and duration of Hedgehog signaling during extension of the tumor initiation capacity. On the basis of our results, identification of agents that induce RUNX3 may be useful for developing new and effective therapies for CRC.


Asunto(s)
Neoplasias del Colon/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Proteínas Hedgehog/metabolismo , Animales , Apoptosis , Ciclo Celular , Proliferación Celular , Neoplasias del Colon/patología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Transducción de Señal , Células Tumorales Cultivadas
13.
J Cancer ; 11(2): 460-467, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31897241

RESUMEN

Oxaliplatin is used for treatment in combination with many drugs. However, the survival rate is still low due to side effects and drug resistance. Therefore, the combination with natural products was required for increasing efficacy and reducing side effects. Genipin, a natural product derived from the Gardenia jasminoides, associated with anti-angiogenic, anti-proliferative, hypertension, inflammatory, and the Hedgehog pathway. It is not known that genipin increases the therapeutic effect of oxaliplatin in gastric cancer. In this study, we found that genipin sensitizes oxaliplatin-induced apoptosis for the first time using colony forming assay, FACS analysis, and western blotting in gastric cancer. Additionally, genipin induced p53 expression in AGS, MKN45, and MKN28 cells. Also, genipin induced autophagy and LC3 expression. Knockdown of LC3 decreased cell death enhanced by the combination of oxaliplatin and genipin. In summary, we showed that genipin increases the oxaliplatin-induced cell death via p53-DRAM autophagy. Based on this, we suggest that genipin is a sensitizer of oxaliplatin.

14.
Oncogene ; 39(1): 136-150, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31462707

RESUMEN

Hypoxia, or the deficiency of oxygen, in solid tumors is majorly responsible for the progression of cancer and remains unaffected by chemotherapy, but still requires definitive definition of the hypoxia signaling. Hypoxia disrupts the complete folding of mitochondrial proteins, leading to several diseases. The present study confirms that hypoxia activates the Hedgehog pathway in colorectal cancer (CRC), considering its role in cancer epithelial to mesenchymal transition, migration, and invasion. The activity of hypoxia-mediated Gli-1, a Hedgehog signaling factor in hypoxia, was confirmed by in vitro western blotting, immunofluorescence staining, wound-healing assay, and matrigel invasion assay, as well as by in vivo xenograft models (n = 5 per group). The Gli-1 mechanism in hypoxia was analyzed via mass spectrometry. Hypoxia enhanced the interaction of Gli-1 and T-complex protein 1 subunit beta (CCT2), as observed in the mass spectrometric analysis. We observed that reduction in CCT2 inhibits tumor induction by Gli-1. Ubiquitination-mediated Gli-1 degradation by ß-TrCP occurs during incomplete folding of Gli-1 in hypoxia. The human CRC tissues revealed greater CCT2 expression than did the normal colon tissues, indicating that higher CCT2 expression in tumor tissues from CRC patients reduced their survival rate. Moreover, we suggest that CCT2 correlates with Gli-1 expression and is an important determinant of survival in the CRC patients. The results reveal that CCT2 can regulate the folding of Gli-1 in relation to hypoxia in CRC.


Asunto(s)
Chaperonina con TCP-1/genética , Neoplasias Colorrectales/genética , Hipoxia Tumoral/genética , Proteína con Dedos de Zinc GLI1/genética , Animales , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Chaperonina con TCP-1/química , Neoplasias Colorrectales/patología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Proteínas Hedgehog/genética , Xenoinjertos , Humanos , Masculino , Ratones , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Pliegue de Proteína , Proteolisis/efectos de los fármacos , Transducción de Señal/genética , Tasa de Supervivencia , Ubiquitinación/genética , Proteína con Dedos de Zinc GLI1/química , Proteínas con Repetición de beta-Transducina/farmacología
15.
Cancers (Basel) ; 12(9)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825500

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is known to behave as an attractive anti-cancer agent in various cancers. Despite its promise TRAIL has limitations such as short half-life and rapid development of resistance. In this regard, approaches to sensitizers of TRAIL that can overcome the limitations of TRAIL are necessary. However, the molecular targets and mechanisms underlying sensitization to TRAIL-induced apoptosis are not fully understood. Here, we propose that reactive oxygen species modulator-1 (Romo1) as an attractive sensitizer of TRAIL. Romo1 is a mitochondrial inner membrane channel protein that controls reactive oxygen species (ROS) production, and its expression is highly upregulated in various cancers, including colorectal cancer. In the present study, we demonstrated that Romo1 inhibition significantly increased TRAIL-induced apoptosis of colorectal cancer cells, but not of normal colon cells. The combined effect of TRAIL and Romo1 inhibition was correlated with the activation of mitochondrial apoptosis pathways. Romo1 silencing elevated the protein levels of BCL-2-associated X protein (Bax) by downregulating the ubiquitin proteasome system (UPS). Romo1 inhibition downregulated the interaction between Bax and Parkin. Furthermore, Romo1 knockdown triggered the mitochondrial dysfunction and ROS generation. We validated the effect of combination in tumor xenograft model in vivo. In conclusion, our study demonstrates that Romo1 inhibition induces TRAIL-mediated apoptosis by identifying the novel mechanism associated with the Bax/Parkin interaction. We suggest that targeting of Romo1 is essential for the treatment of colorectal cancer and may be a new therapeutic approach in the future and contribute to the drug discovery.

16.
Mol Cancer Ther ; 18(4): 751-761, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30787174

RESUMEN

Despite an increase in the survival rate of patients with cancer owing to the use of current chemotherapeutic agents, adverse effects of cancer therapies remain a concern. Combination therapies have been developed to increase efficacy, reduce adverse effects, and overcome drug resistance. Genipin is a natural product derived from Gardenia jasminoides, which has been associated with anti-inflammatory, anti-angiogenic, and anti-proliferative effects; hypertension; and anti-ischemic brain injuries. However, the enhancement of oxaliplatin sensitivity by genipin remains unexplored. Our study showed that a combination of genipin and oxaliplatin exerts synergistic antitumor effects in vitro and in vivo in colorectal cancer cell lines through the reactive oxygen species (ROS)/endoplasmic reticulum (ER) stress/BIM pathway. Importantly, the combination did not affect normal colon cells. BIM knockdown markedly inhibited apoptosis induced by the combination. In addition, genipin induced ROS by inhibiting superoxide dismutase 3 activity. These findings suggest that genipin may be a novel agent for increasing the sensitivity of oxaliplatin against colorectal cancer. The combination of oxaliplatin and genipin hold significant therapeutic potential with minimal adverse effects.


Asunto(s)
Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Iridoides/uso terapéutico , Oxaliplatino/uso terapéutico , Extractos Vegetales/uso terapéutico , Animales , Antineoplásicos/efectos adversos , Apoptosis/efectos de los fármacos , Proteína 11 Similar a Bcl2/genética , Proteína 11 Similar a Bcl2/metabolismo , Neoplasias Colorrectales/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Gardenia/química , Técnicas de Silenciamiento del Gen , Células HCT116 , Humanos , Iridoides/efectos adversos , Iridoides/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Oxaliplatino/efectos adversos , Extractos Vegetales/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/metabolismo , Transfección , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Oncol Rep ; 41(3): 1616-1626, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30569109

RESUMEN

Imatinib is a powerful tyrosine kinase inhibitor that specifically targets BCR­ABL, c­KIT, and PDGFR kinases, and is used in the treatment of chronic myelogenous leukemia, gastrointestinal stromal tumors, and other types of cancers. However, the possible anticancer effects of imatinib in gastric cancer have not yet been explored. The present study evaluated the in vitro effects of imatinib on gastric cancer cells and determined the molecular mechanism underlying these effects. We determined that imatinib induced mitochondria­mediated apoptosis of gastric cancer cells by involving endoplasmic reticulum (ER) stress­associated activation of c­Jun NH2­terminal kinase (JNK). We also found that imatinib suppressed cell proliferation in a time­ and dose­dependent manner. Cell cycle analysis revealed that imatinib­treated AGS cells were arrested in the G2/M phase of the cell cycle. Moreover, imatinib­treated cells exhibited increased levels of phosphorylated JNK, and of the transcription factor C/EBP homologous protein, an ER stress­associated apoptotic molecule. Results of cell viability assays revealed that treatment with a combination of imatinib and chemotherapy agents irinotecan or 5­Fu synergistically inhibited cell growth, compared with treatment with any of these drugs alone. These data indicated that imatinib exerted cytotoxic effects on gastric cancer cells by inducing apoptosis mediated by reactive oxygen species generation and ER stress­associated JNK activation. Furthermore, we revealed that imatinib induced the apoptosis of gastric cancer cells by inhibiting platelet­derived growth factor receptor signaling. Collectively, our results strongly support the use of imatinib in the treatment of treating gastric cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Mesilato de Imatinib/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Neoplasias Gástricas/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Sinergismo Farmacológico , Endorribonucleasas/metabolismo , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Humanos , Mesilato de Imatinib/uso terapéutico , Irinotecán/farmacología , Irinotecán/uso terapéutico , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/patología , Factor de Transcripción CHOP/metabolismo
18.
Oncogene ; 38(20): 3903-3918, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30692634

RESUMEN

RUNX3 is frequently inactivated by DNA hypermethylation in numerous cancers. Here, we show that RUNX3 has an important role in modulating apoptosis in immediate response to tumor necrosis factor-related apoptosis-including ligand (TRAIL). Importantly, no combined effect of TRAIL and RUNX3 was observed in non-cancerous cells. We investigated the expression of the death receptors (DRs) DR4 and DR5, which are related to TRAIL resistance. Overexpression of RUNX3 increased DR5 expression via induction of the reactive oxygen species (ROS)-endoplasmic reticulum (ER) stress-effector CHOP. Reduction of DR5 markedly decreased apoptosis enhanced by the combined therapy of TRAIL and RUNX3. Interestingly, RUNX3 induced reactive oxygen species production by inhibiting SOD3 transcription via binding to the Superoxide dismutase 3 (SOD3) promoter. Additionally, the combined effect of TRAIL and RUNX3 decreased tumor growth in xenograft models. Our results demonstrate a direct role for RUNX3 in TRAIL-induced apoptosis via activation of DR5 and provide further support for RUNX3 as an anti-tumor.


Asunto(s)
Neoplasias Colorrectales/patología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Apoptosis/fisiología , Neoplasias Colorrectales/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Estrés del Retículo Endoplásmico , Femenino , Células HT29 , Humanos , Masculino , Especies Reactivas de Oxígeno/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Superóxido Dismutasa/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Factor de Transcripción CHOP/metabolismo , Regulación hacia Arriba
19.
Theranostics ; 9(8): 2235-2251, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31149041

RESUMEN

A major problem of colorectal cancer (CRC) targeted therapies is relapse caused by drug resistance. In most cases of CRC, patients develop resistance to anticancer drugs. Cetuximab does not show many of the side effects of other anticancer drugs and improves the survival of patients with metastatic CRC. However, the molecular mechanism of cetuximab resistance is not fully understood. Methods: EPHB3-mediated cetuximab resistance was confirmed by in vitro western blotting, colony-forming assays, WST-1 colorimetric assay, and in vivo xenograft models (n = 7 per group). RNA-seq analysis and receptor tyrosine kinase assays were performed to identify the cetuximab resistance mechanism of EPHB3. All statistical tests were two-sided. Results: The expression of EFNB3, which upregulates the EPHB3 receptor, was shown to be increased via microarray analysis. When resistance to cetuximab was acquired, EPHB3 protein levels increased. Hedgehog signaling, cancer stemness, and epithelial-mesenchymal transition signaling proteins were also increased in the cetuximab-resistant human colon cancer cell line SW48R. Despite cells acquiring resistance to cetuximab, STAT3 was still responsive to EGF and cetuximab treatment. Moreover, inhibition of EPHB3 was associated with decreased STAT3 activity. Co-immunoprecipitation confirmed that EGFR and EPHB3 bind to each other and this binding increases upon resistance acquisition, suggesting that STAT3 is activated by the binding between EGFR and EPHB3. Protein levels of GLI-1, SOX2, and Vimentin, which are affected by STAT3, also increased. Similar results were obtained in samples from patients with CRC. Conclusion: EPHB3 expression is associated with anticancer drug resistance.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Resistencia a Antineoplásicos , Proteínas Hedgehog/metabolismo , Receptor EphB3/metabolismo , Transducción de Señal , Animales , Antineoplásicos/uso terapéutico , Cetuximab/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Células HCT116 , Células HT29 , Proteínas Hedgehog/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Receptor EphB3/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Vimentina/genética , Vimentina/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
20.
Cancers (Basel) ; 11(7)2019 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-31337142

RESUMEN

Oxaliplatin is an anticancer drug administered to colorectal cancer (CRC) patients in combination with 5-fluorouracil and antibodies (bevacizumab and cetuximab), thereby significantly improving the survival rate of CRC. However, due to various side effects associated with the above treatment strategy, the need for combinatorial therapeutic strategies has emerged. Based on the demand for new combinatorial therapies and the known antitumor effects of the omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA), we investigated the Oxaliplatin and DHA combination for its effect. Our results indicated that DHA further enhanced Oxaliplatin-induced cell viability and autophagic cell death, in vitro and in vivo. Oxaliplatin and DHA also increased the expression of Sestrin 2 (SESN2) and endoplasmic reticulum (ER) stress related C/EBP homologous protein (CHOP). Additionally, treatment with Oxaliplatin and DHA enhanced the binding of CHOP to the promotor region of SESN2, increasing SESN2 expression. These results suggested that DHA enhanced Oxaliplatin-induced reduction in cell viability and increase in autophagy via activating SESN2 and increasing ER stress. Thus, SESN2 may be an effective preclinical target for CRC treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA