Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nucleic Acids Res ; 51(20): 10950-10969, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37811880

RESUMEN

An RNA structure or modified RNA sequences can provide a platform for ribosome loading and internal translation initiation. The functional significance of internal translation has recently been highlighted by the discovery that a subset of circular RNAs (circRNAs) is internally translated. However, the molecular mechanisms underlying the internal initiation of translation in circRNAs remain unclear. Here, we identify eIF3g (a subunit of eIF3 complex) as a binding partner of eIF4A3, a core component of the exon-junction complex (EJC) that is deposited onto spliced mRNAs and plays multiple roles in the regulation of gene expression. The direct interaction between eIF4A3-eIF3g serves as a molecular linker between the eIF4A3 and eIF3 complex, thereby facilitating internal ribosomal entry. Protein synthesis from in vitro-synthesized circRNA demonstrates eIF4A3-driven internal translation, which relies on the eIF4A3-eIF3g interaction. Furthermore, our transcriptome-wide analysis shows that efficient polysomal association of endogenous circRNAs requires eIF4A3. Notably, a subset of endogenous circRNAs can express a full-length intact protein, such as ß-catenin, in an eIF4A3-dependent manner. Collectively, our results expand the understanding of the protein-coding potential of the human transcriptome, including circRNAs.


Asunto(s)
Factor 3 de Iniciación Eucariótica , Factor 4A Eucariótico de Iniciación , ARN Circular , Humanos , Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Proteínas , Ribosomas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Nucleic Acids Res ; 49(14): 8261-8276, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34232997

RESUMEN

Newly synthesized mRNA is translated during its export through the nuclear pore complex, when its 5'-cap structure is still bound by the nuclear cap-binding complex (CBC), a heterodimer of cap-binding protein (CBP) 80 and CBP20. Despite its critical role in mRNA surveillance, the mechanism by which CBC-dependent translation (CT) is regulated remains unknown. Here, we demonstrate that the CT initiation factor (CTIF) is tethered in a translationally incompetent manner to the perinuclear region by the DEAD-box helicase 19B (DDX19B). DDX19B hands over CTIF to CBP80, which is associated with the 5'-cap of a newly exported mRNA. The resulting CBP80-CTIF complex then initiates CT in the perinuclear region. We also show that impeding the interaction between CTIF and DDX19B leads to uncontrolled CT throughout the cytosol, consequently dysregulating nonsense-mediated mRNA decay. Altogether, our data provide molecular evidence supporting the importance of tight control of local translation in the perinuclear region.


Asunto(s)
ARN Helicasas DEAD-box/genética , Factores Eucarióticos de Iniciación/genética , Complejo Proteico Nuclear de Unión a la Caperuza/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Biosíntesis de Proteínas , Citoplasma/genética , Células HeLa , Humanos , Degradación de ARNm Mediada por Codón sin Sentido/genética , Mapas de Interacción de Proteínas/genética , Proteínas de Unión a Caperuzas de ARN/genética , ARN Mensajero/genética
3.
Nucleic Acids Res ; 49(21): 12517-12534, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34850140

RESUMEN

The pioneer (or first) round of translation of newly synthesized mRNAs is largely mediated by a nuclear cap-binding complex (CBC). In a transcriptome-wide analysis of polysome-associated and CBC-bound transcripts, we identify RN7SL1, a noncoding RNA component of a signal recognition particle (SRP), as an interaction partner of the CBC. The direct CBC-SRP interaction safeguards against abnormal expression of polypeptides from a ribosome-nascent chain complex (RNC)-SRP complex until the latter is properly delivered to the endoplasmic reticulum. Failure of this surveillance causes abnormal expression of misfolded proteins at inappropriate intracellular locations, leading to a cytosolic stress response. This surveillance pathway also blocks protein synthesis through RNC-SRP misassembled on an mRNA encoding a mitochondrial protein. Thus, our results reveal a surveillance pathway in which pioneer translation ensures proper targeting of endoplasmic reticulum and mitochondrial proteins.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Partícula de Reconocimiento de Señal/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Mitocondriales/genética , Modelos Genéticos , Complejo Proteico Nuclear de Unión a la Caperuza/genética , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Polirribosomas/genética , Polirribosomas/metabolismo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/genética , Transducción de Señal/genética
4.
Biochem Biophys Res Commun ; 618: 73-78, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35716598

RESUMEN

Eukaryotic translation is a complex process that involves the interplay of various translation factors to convert genetic information into a specific amino acid chain. According to an elegant model of eukaryotic translation initiation, the 3' poly(A) tail of an mRNA, which is occupied by poly(A)-binding proteins (PABPs), communicates with the 5'-cap bound by eIF4E to enhance translation. Although the circularization of mRNA resulting from the communication is widely understood, it has yet to be directly observed. To explore mRNA circularization in translation, we analyzed the level of colocalization of eIF4E, eIF4G, and PABP on individual mRNAs in polysomal and subpolysomal fractions using single polysome analysis. Our results show that the three tested proteins barely coexist in mRNA in either polysomal or subpolysomal fractions, implying that the closed-loop structure generated by the communication between eIF4E, eIF4G, and PAPB may be transient during translation.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Factor 4G Eucariótico de Iniciación , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Proteínas de Unión a Poli(A)/genética , Polirribosomas/metabolismo , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribonucleoproteínas
5.
Nucleic Acids Res ; 47(17): 9313-9328, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31361897

RESUMEN

Newly synthesized mRNAs are exported from the nucleus to cytoplasm with a 5'-cap structure bound by the nuclear cap-binding complex (CBC). During or after export, the CBC should be properly replaced by cytoplasmic cap-binding protein eIF4E for efficient protein synthesis. Nonetheless, little is known about how the replacement takes place. Here, we show that double-stranded RNA-binding protein staufen1 (STAU1) promotes efficient replacement by facilitating an association between the CBC-importin α complex and importin ß. Our transcriptome-wide analyses and artificial tethering experiments also reveal that the replacement occurs more efficiently when an mRNA associates with STAU1. This event is inhibited by a key nonsense-mediated mRNA decay factor, UPF1, which directly interacts with STAU1. Furthermore, we find that cellular apoptosis that is induced by ionizing radiation is accompanied by inhibition of the replacement via increased association between STAU1 and hyperphosphorylated UPF1. Altogether, our data highlight the functional importance of STAU1 and UPF1 in the course of the replacement of the CBC by eIF4E, adding a previously unappreciated layer of post-transcriptional gene regulation.


Asunto(s)
Proteínas del Citoesqueleto/genética , Factor 4E Eucariótico de Iniciación/genética , Biosíntesis de Proteínas/genética , ARN Helicasas/genética , Proteínas de Unión al ARN/genética , Transactivadores/genética , Regiones no Traducidas 5' , Núcleo Celular/genética , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Complejo Proteico Nuclear de Unión a la Caperuza/genética , Proteínas de Unión a Caperuzas de ARN/genética , Estabilidad del ARN/genética , ARN Mensajero/genética
6.
FASEB J ; 33(2): 2680-2693, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30303743

RESUMEN

All metazoan mRNAs have a poly(A) tail at the 3' end with the exception of replication-dependent histone (RDH) mRNAs, which end in a highly conserved stem-loop (SL) structure. However, a subset of RDH mRNAs are reported to be polyadenylated under physiologic conditions. The molecular details of the biogenesis of polyadenylated RDH [poly(A)+ RDH] mRNAs remain unknown. In this study, our genome-wide analyses reveal that puromycin treatment or UVC irradiation stabilizes poly(A)+ RDH mRNAs, relative to canonical RDH mRNAs, which end in an SL structure. We demonstrate that the stabilization of poly(A)+ RDH mRNAs occurs in a translation-independent manner and is regulated via human antigen R (HuR) binding to the extended 3' UTR under stress conditions. Our data suggest that HuR regulates the expression of poly(A)+ RDH mRNAs.-Ryu, I., Park, Y., Seo, J.-W., Park, O. H., Ha, H., Nam, J.-W., Kim, Y. K. HuR stabilizes a polyadenylated form of replication-dependent histone mRNAs under stress conditions.


Asunto(s)
Replicación del ADN , Proteína 1 Similar a ELAV/metabolismo , Regulación Neoplásica de la Expresión Génica , Histonas/genética , Poliadenilación , ARN Mensajero/genética , Estrés Fisiológico , Proteína 1 Similar a ELAV/genética , Células HeLa , Histonas/metabolismo , Humanos , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Transcripción Genética
7.
Nat Commun ; 14(1): 6248, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803021

RESUMEN

YTHDF2 has been extensively studied and typified as an RNA-binding protein that specifically recognizes and destabilizes RNAs harboring N6-methyladenosine (m6A), the most prevalent internal modification found in eukaryotic RNAs. In this study, we unravel the m6A-independent role of YTHDF2 in the formation of an aggresome, where cytoplasmic protein aggregates are selectively sequestered upon failure of protein homeostasis mediated by the ubiquitin-proteasome system. Downregulation of YTHDF2 in HeLa cells reduces the circularity of aggresomes and the rate of movement of misfolded polypeptides, inhibits aggresome formation, and thereby promotes cellular apoptosis. Mechanistically, YTHDF2 is recruited to a misfolded polypeptide-associated complex composed of UPF1, CTIF, eEF1A1, and DCTN1 through its interaction with UPF1. Subsequently, YTHDF2 increases the interaction between the dynein motor protein and the misfolded polypeptide-associated complex, facilitating the diffusion dynamics of the movement of misfolded polypeptides toward aggresomes. Therefore, our data reveal that YTHDF2 is a cellular factor involved in protein quality control.


Asunto(s)
Pliegue de Proteína , Proteolisis , Humanos , Citoplasma/metabolismo , Dineínas/metabolismo , Células HeLa , Péptidos/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Orgánulos/metabolismo
8.
Biomedicines ; 9(8)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34440199

RESUMEN

Selective recognition and removal of faulty transcripts and misfolded polypeptides are crucial for cell viability. In eukaryotic cells, nonsense-mediated mRNA decay (NMD) constitutes an mRNA surveillance pathway for sensing and degrading aberrant transcripts harboring premature termination codons (PTCs). NMD functions also as a post-transcriptional gene regulatory mechanism by downregulating naturally occurring mRNAs. As NMD is activated only after a ribosome reaches a PTC, PTC-containing mRNAs inevitably produce truncated and potentially misfolded polypeptides as byproducts. To cope with the emergence of misfolded polypeptides, eukaryotic cells have evolved sophisticated mechanisms such as chaperone-mediated protein refolding, rapid degradation of misfolded polypeptides through the ubiquitin-proteasome system, and sequestration of misfolded polypeptides to the aggresome for autophagy-mediated degradation. In this review, we discuss how UPF1, a key NMD factor, contributes to the selective removal of faulty transcripts via NMD at the molecular level. We then highlight recent advances on UPF1-mediated communication between mRNA surveillance and protein quality control.

9.
Autophagy ; 17(12): 4231-4248, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33783327

RESUMEN

Selective recognition and elimination of misfolded polypeptides are crucial for protein homeostasis. When the ubiquitin-proteasome system is impaired, misfolded polypeptides tend to form small cytosolic aggregates and are transported to the aggresome and eventually eliminated by the autophagy pathway. Despite the importance of this process, the regulation of aggresome formation remains poorly understood. Here, we identify TRIM28/TIF1ß/KAP1 (tripartite motif containing 28) as a negative regulator of aggresome formation. Direct interaction between TRIM28 and CTIF (cap binding complex dependent translation initiation factor) leads to inefficient aggresomal targeting of misfolded polypeptides. We also find that either treatment of cells with poly I:C or infection of the cells by influenza A viruses triggers the phosphorylation of TRIM28 at S473 in a way that depends on double-stranded RNA-activated protein kinase. The phosphorylation promotes association of TRIM28 with CTIF, inhibits aggresome formation, and consequently suppresses viral proliferation. Collectively, our data provide compelling evidence that TRIM28 is a negative regulator of aggresome formation.Abbreviations: BAG3: BCL2-associated athanogene 3; CTIF: CBC-dependent translation initiation factor; CED: CTIF-EEF1A1-DCTN1; DCTN1: dynactin subunit 1; EEF1A1: eukaryotic translation elongation factor 1 alpha 1; EIF2AK2: eukaryotic translation initiation factor 2 alpha kinase 2; HDAC6: histone deacetylase 6; IAV: influenza A virus; IP: immunoprecipitation; PLA: proximity ligation assay; polypeptidyl-puro: polypeptidyl-puromycin; qRT-PCR: quantitative reverse-transcription PCR; siRNA: small interfering RNA.


Asunto(s)
Autofagia , Virus de la Influenza A , Cuerpos de Inclusión/metabolismo , Virus de la Influenza A/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo
10.
Nat Commun ; 11(1): 3106, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561765

RESUMEN

Nonsense-mediated mRNA decay (NMD) typifies an mRNA surveillance pathway. Because NMD necessitates a translation event to recognize a premature termination codon on mRNAs, truncated misfolded polypeptides (NMD-polypeptides) could potentially be generated from NMD substrates as byproducts. Here, we show that when the ubiquitin-proteasome system is overwhelmed, various misfolded polypeptides including NMD-polypeptides accumulate in the aggresome: a perinuclear nonmembranous compartment eventually cleared by autophagy. Hyperphosphorylation of the key NMD factor UPF1 is required for selective targeting of the misfolded polypeptide aggregates toward the aggresome via the CTIF-eEF1A1-DCTN1 complex: the aggresome-targeting cellular machinery. Visualization at a single-particle level reveals that UPF1 increases the frequency and fidelity of movement of CTIF aggregates toward the aggresome. Furthermore, the apoptosis induced by proteotoxic stresses is suppressed by UPF1 hyperphosphorylation. Altogether, our data provide evidence that UPF1 functions in the regulation of a protein surveillance as well as an mRNA quality control.


Asunto(s)
Degradación de ARNm Mediada por Codón sin Sentido , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Helicasas/metabolismo , ARN Mensajero/metabolismo , Transactivadores/metabolismo , Respuesta de Proteína Desplegada/genética , Autofagia , Codón sin Sentido , Complejo Dinactina/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Células HEK293 , Células HeLa , Humanos , Imagen Molecular , Factor 1 de Elongación Peptídica/metabolismo , Fosforilación , Agregado de Proteínas/genética , Imagen Individual de Molécula , Ubiquitina/metabolismo
11.
Cell Rep ; 26(8): 2126-2139.e9, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30784594

RESUMEN

Exon junction complexes (EJCs) loaded onto spliced mRNAs during splicing serve as molecular markers for various post-transcriptional gene-regulatory processes, including nonsense-mediated mRNA decay (NMD). Although the composition and structure of EJCs are well characterized, the mechanism regulating EJC deposition remains unknown. Here we find that threonine 163 (T163) within the RNA-binding motif of eIF4A3 (a core EJC component) is phosphorylated by cyclin-dependent protein kinases 1 and 2 in a cell cycle-dependent manner. T163 phosphorylation hinders binding of eIF4A3 to spliced mRNAs and other EJC components. Instead, it promotes association of eIF4A3 with CWC22, which guides eIF4A3 to an active spliceosome. These molecular events ensure the fidelity of specific deposition of the EJC ∼20-24 nt upstream of an exon-exon junction. Accordingly, NMD is affected by T163 phosphorylation. Collectively, our data provide evidence that T163 phosphorylation affects EJC formation and, consequently, NMD efficiency in a cell cycle-dependent manner.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Ciclo Celular , Quinasa 2 Dependiente de la Ciclina/metabolismo , ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , Sitios de Unión , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , Factor 4A Eucariótico de Iniciación/química , Factor 4A Eucariótico de Iniciación/genética , Células HEK293 , Células HeLa , Humanos , Mutación , Fosforilación , Unión Proteica , ARN Mensajero/metabolismo
12.
Autophagy ; 14(6): 1079-1081, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28837386

RESUMEN

Many neurodegenerative disorders feature the presence of misfolded polypeptide-containing intracellular inclusion bodies biochemically and morphologically analogous to cellular aggresomes. However, it is largely unknown how misfolded polypeptides form aggresomes and are eventually cleared by the aggresome-macroautophagy/autophagy pathway, so-called aggrephagy. Our recent study revealed that when the ubiquitin-proteasome system is impaired, the accumulated misfolded polypeptides are selectively recognized and transported to the aggresome by a CED complex. This complex is composed of CTIF, originally identified as a specific factor for nuclear cap-binding protein complex (a heterodimer of NCBP1/CBP80 and NCBP2/CBP20)-dependent translation (CT), and its associated factors EEF1A1 and DCTN1. Aggresomal targeting of a misfolded polypeptide via the CED complex is accompanied by CTIF release from the CT complex and thereby inhibits CT efficiency. Therefore, our study provides new mechanistic insights into the crosstalk between translational inhibition and aggresome formation under the influence of a misfolded polypeptide.


Asunto(s)
Autofagia , Cuerpos de Inclusión , Péptidos , Complejo de la Endopetidasa Proteasomal , Pliegue de Proteína
13.
Nat Commun ; 9(1): 3291, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120248

RESUMEN

p62/SQSTM1 is the key autophagy adapter protein and the hub of multi-cellular signaling. It was recently reported that autophagy and N-end rule pathways are linked via p62. However, the exact recognition mode of degrading substrates and regulation of p62 in the autophagic pathway remain unknown. Here, we present the complex structures between the ZZ-domain of p62 and various type-1 and type-2 N-degrons. The binding mode employed in the interaction of the ZZ-domain with N-degrons differs from that employed by classic N-recognins. It was also determined that oligomerization via the PB1 domain can control functional affinity to the R-BiP substrate. Unexpectedly, we found that self-oligomerization and disassembly of p62 are pH-dependent. These findings broaden our understanding of the functional repertoire of the N-end rule pathway and provide an insight into the regulation of p62 during the autophagic pathway.


Asunto(s)
Autofagia , Proteolisis , Proteína Sequestosoma-1/metabolismo , Secuencia de Aminoácidos , Chaperón BiP del Retículo Endoplásmico , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Modelos Biológicos , Modelos Moleculares , Mutación/genética , Agregado de Proteínas , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Proteína Sequestosoma-1/química , Especificidad por Sustrato
14.
Nat Commun ; 8: 15730, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28589942

RESUMEN

Misfolded polypeptides are rapidly cleared from cells via the ubiquitin-proteasome system (UPS). However, when the UPS is impaired, misfolded polypeptides form small cytoplasmic aggregates, which are sequestered into an aggresome and ultimately degraded by aggrephagy. Despite the relevance of the aggresome to neurodegenerative proteinopathies, the molecular mechanisms underlying aggresome formation remain unclear. Here we show that the CTIF-eEF1A1-DCTN1 (CED) complex functions in the surveillance of either pre-existing or newly synthesized polypeptides by linking two molecular events: selective recognition and aggresomal targeting of misfolded polypeptides. These events are accompanied by CTIF sequestration into the aggresome, preventing the additional synthesis of misfolded polypeptides from mRNAs bound by nuclear cap-binding complex. These events render cells more resistant to apoptosis induced by proteotoxic stresses. Collectively, our data provide compelling evidence for a previously unappreciated protein surveillance pathway and a regulatory gene expression network for coping with misfolded polypeptides.


Asunto(s)
Apoptosis , Cuerpos de Inclusión/química , Factor 1 de Elongación Peptídica/química , Péptidos/química , Complejo de la Endopetidasa Proteasomal/química , Pliegue de Proteína , Autofagia , Transporte Biológico , Citoplasma/química , Regulación hacia Abajo , Células HEK293 , Células HeLa , Humanos , Unión Proteica , Desnaturalización Proteica , Transporte de Proteínas , Ubiquitina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA