Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Neuropsychopharmacol ; 20(4): 336-345, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27927737

RESUMEN

Background: Dendritic arbor simplification and dendritic spine loss in the hippocampus, a limbic structure implicated in mood disorders, are assumed to contribute to symptoms of depression. These morphological changes imply modifications in dendritic cytoskeleton. Rho GTPases are regulators of actin dynamics through their effector Rho kinase. We have reported that chronic stress promotes depressive-like behaviors in rats along with dendritic spine loss in apical dendrites of hippocampal pyramidal neurons, changes associated with Rho kinase activation. The present study proposes that the Rho kinase inhibitor Fasudil may prevent the stress-induced behavior and dendritic spine loss. Methods: Adult male Sprague-Dawley rats were injected with saline or Fasudil (i.p., 10 mg/kg) starting 4 days prior to and maintained during the restraint stress procedure (2.5 h/d for 14 days). Nonstressed control animals were injected with saline or Fasudil for 18 days. At 24 hours after treatment, forced swimming test, Golgi-staining, and immuno-western blot were performed. Results: Fasudil prevented stress-induced immobility observed in the forced swimming test. On the other hand, Fasudil-treated control animals showed behavioral patterns similar to those of saline-treated controls. Furthermore, we observed that stress induced an increase in the phosphorylation of MYPT1 in the hippocampus, an exclusive target of Rho kinase. This change was accompanied by dendritic spine loss of apical dendrites of pyramidal hippocampal neurons. Interestingly, increased pMYPT1 levels and spine loss were both prevented by Fasudil administration. Conclusion: Our findings suggest that Fasudil may prevent the development of abnormal behavior and spine loss induced by chronic stress by blocking Rho kinase activity.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Dendritas/efectos de los fármacos , Depresión/patología , Depresión/prevención & control , Hipocampo/patología , Células Piramidales/ultraestructura , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/uso terapéutico , Factores Despolimerizantes de la Actina/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Dendritas/ultraestructura , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Pérdida de Tono Postural/efectos de los fármacos , Quinasas Lim/metabolismo , Masculino , Plasticidad Neuronal/efectos de los fármacos , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteína Fosfatasa 1/metabolismo , Células Piramidales/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Restricción Física/efectos adversos , Natación/psicología
2.
ACS Chem Neurosci ; 12(16): 2981-3001, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34339164

RESUMEN

We explored sex-biased effects of the primary stress glucocorticoid hormone corticosterone on the miRNA expression profile in the rat hippocampus. Adult adrenalectomized (ADX) female and male rats received a single corticosterone (10 mg/kg) or vehicle injection, and after 6 h, hippocampi were collected for miRNA, mRNA, and Western blot analyses. miRNA profiling microarrays showed a basal sex-biased miRNA profile in ADX rat hippocampi. Additionally, acute corticosterone administration triggered a sex-biased differential expression of miRNAs derived from genes located in several chromosomes and clusters on the X and 6 chromosomes. Putative promoter analysis unveiled that most corticosterone-responsive miRNA genes contained motifs for either direct or indirect glucocorticoid actions in both sexes. The evaluation of transcription factors indicated that almost 50% of miRNA genes sensitive to corticosterone in both sexes was under glucocorticoid receptor regulation. Transcription factor-miRNA regulatory network analyses identified several transcription factors that regulate, activate, or repress miRNA expression. Validated target mRNA analysis of corticosterone-responsive miRNAs showed a more complex miRNA-mRNA interaction network in males compared to females. Enrichment analysis revealed that several hippocampal-relevant pathways were affected in both sexes, such as neurogenesis and neurotrophin signaling. The evaluation of selected miRNA targets from these pathways displayed a strong sex difference in the hippocampus of ADX-vehicle rats. Corticosterone treatment did not change the levels of the miRNA targets and their corresponding tested proteins. Our data indicate that corticosterone exerts a sex-biased effect on hippocampal miRNA expression, which may engage in sculpting the basal sex differences observed at higher levels of hippocampal functioning.


Asunto(s)
Corticosterona , MicroARNs , Adrenalectomía , Animales , Corticosterona/farmacología , Femenino , Hipocampo/metabolismo , Masculino , MicroARNs/genética , Ratas , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
3.
Front Mol Neurosci ; 10: 244, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28848384

RESUMEN

Previous studies in rats have demonstrated that chronic restraint stress triggers anhedonia, depressive-like behaviors, anxiety and a reduction in dendritic spine density in hippocampal neurons. In this study, we compared the effect of repeated stress on the expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor subunits in dorsal and ventral hippocampus (VH). Adult male Sprague-Dawley rats were randomly divided into control and stressed groups, and were daily restrained in their motion (2.5 h/day) during 14 days. We found that chronic stress promotes an increase in c-Fos mRNA levels in both hippocampal areas, although it was observed a reduction in the immunoreactivity at pyramidal cell layer. Furthermore, Arc mRNAs levels were increased in both dorsal and VH, accompanied by an increase in Arc immunoreactivity in dendritic hippocampal layers. Furthermore, stress triggered a reduction in PSD-95 and NR1 protein levels in whole extract of dorsal and VH. Moreover, a reduction in NR2A/NR2B ratio was observed only in dorsal pole. In synaptosomal fractions, we detected a rise in NR1 in dorsal hippocampus (DH). By indirect immunofluorescence we found that NR1 subunits rise, especially in neuropil areas of dorsal, but not VH. In relation to AMPA receptor (AMPAR) subunits, chronic stress did not trigger any change, either in dorsal or ventral hippocampal areas. These data suggest that DH is more sensitive than VH to chronic stress exposure, mainly altering the expression of NMDA receptor (NMDAR) subunits, and probably favors changes in the configuration of this receptor that may influence the function of this area.

4.
BMC Neurosci ; 7: 40, 2006 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-16712723

RESUMEN

BACKGROUND: Corticosterone reduction produced by adrenalectomy (ADX) induces apoptosis in dentate gyrus (DG) of the hippocampus, an effect related to an increase in the expression of the pro-apoptotic gene bax. However it has been reported that there is also an increase of the anti-apoptotic gene bcl-2, suggesting the promotion of a neuroprotective phenomenon, perhaps related to the expression of transforming growth factor beta1 (TGF-beta1). Thus, we have investigated whether TGF-beta1 levels are induced by ADX, and whether apoptosis is increased by blocking the expression of TGF-beta1 with an antisense oligonucleotide (ASO) administered intracerebrally in corticosterone depleted rats. RESULTS: It was observed an increase of apoptosis in DG, 2 and 5 days after ADX, in agreement with a reduction of corticosterone levels. However, the effect of ADX on the number of apoptotic positive cells in DG was decreased 5 days after the lesion. In CA1-CA3 regions, the effect was only observed 2 days after ADX. TGF-beta1 mRNA levels were increased 2 days after ADX. The sustained intracerebro-ventricular administration of a TGF-beta1 ASO via an osmotic mini pump increased apoptosis levels in CA and DG regions 5 days after ADX as well as sham-operated control animals. No significant effect was observed following a scrambled-oligodeoxynucleotide treatment. CONCLUSION: The changes in both the pattern and the magnitude of apoptotic-cell morphology observed 2 and 5 days after ADX suggest that, as a consequence of the reduction of corticosteroids, some trophic mechanisms restricting cell death to a particular time window are elicited. Sustained intracerebral administration of TGF-beta1 ASO increased the apoptosis promoted by ADX, suggesting that TGF-beta1 plays an anti-apoptotic role in vivo in hippocampus.


Asunto(s)
Apoptosis , Corticosterona/sangre , Hipocampo/metabolismo , Oligodesoxirribonucleótidos Antisentido/farmacología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Adrenalectomía , Animales , Ventrículos Cerebrales , Expresión Génica , Hipocampo/citología , Hipocampo/efectos de los fármacos , Masculino , Oligodesoxirribonucleótidos Antisentido/administración & dosificación , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta/biosíntesis , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA