Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 21(15): 5826-35, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25711882

RESUMEN

Dibromotetracene molecules are deposited on the Cu(110) surface at room temperature. The complex evolution of this system has been monitored at different temperatures (i.e., 298, 523, 673, and 723 K) by means of a variety of complementary techniques that range from STM and temperature-programmed desorption (TPD) to high-resolution X-ray spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). State-of-the-art density-functional calculations were used to determine the chemical processes that take place on the surface. After deposition at room temperature, the organic molecules are transformed into organometallic monomers through debromination and carbon-radical binding to copper adatoms. Organometallic dimers, trimers, or small oligomers, which present copper-bridged molecules, are formed by increasing the temperature. Surprisingly, further heating to 673 K causes the formation of elongated chains along the Cu(110) close-packed rows as a consequence of radical-site migration to the thermodynamically more stable molecule heads. Finally, massive dehydrogenation occurs at the highest temperature followed by ring condensation to nanographenic patches. This study is a paradigmatic example of how intermolecular coupling can be modulated by the stepwise control of a simple parameter, such as temperature, through a sequence of domino reactions.

2.
Langmuir ; 27(19): 12008-15, 2011 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-21875110

RESUMEN

The integration of nanoscale processes and devices demands fabrication routes involving rapid, cost-effective steps, preferably carried out under ambient conditions. The realization of the metal/organic semiconductor interface is one of the most demanding steps of device fabrication, since it requires mechanical and/or thermal treatments which increment costs and are often harmful in respect to the active layer. Here, we provide a microscopic analysis of a room temperature, electroless process aimed at the deposition of a nanostructured metallic silver layer with controlled coverage atop the surface of single crystals and thin films of organic semiconductors. This process relies on the reaction of aqueous AgF solutions with the nonwettable crystalline surface of donor-type organic semiconductors. It is observed that the formation of a uniform layer of silver nanoparticles can be accomplished within 20 min contact time. The electrical characterization of two-terminal devices performed before and after the aforementioned treatment shows that the metal deposition process is associated with a redox reaction causing the p-doping of the semiconductor.


Asunto(s)
Nanopartículas del Metal/química , Plata/química , Membranas Artificiales , Tamaño de la Partícula , Semiconductores , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA