Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
PLoS Biol ; 12(2): e1001799, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586114

RESUMEN

Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period. The combined actions of Grb10 expressed in the mother, controlling supply, and Grb10 expressed in the offspring, controlling demand, jointly regulate offspring growth. Furthermore, Grb10 determines the proportions of lean and fat tissue during development, thereby influencing energy homeostasis in the adult. Most strikingly, we show that the development of normal lean/fat proportions depends on the combined effects of Grb10 expressed in the mother, which has the greater effect on offspring adiposity, and Grb10 expressed in the offspring, which influences lean mass. These distinct functions of Grb10 in mother and pup act complementarily, which is consistent with a coadaptation model of imprinting evolution, a model predicted but for which there is limited experimental evidence. In addition, our findings identify Grb10 as a key genetic component of developmental programming, and highlight the need for a better understanding of mother-offspring interactions at the genetic level in predicting adult disease risk.


Asunto(s)
Tamaño Corporal/genética , Proteína Adaptadora GRB10/genética , Animales , Femenino , Proteína Adaptadora GRB10/metabolismo , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Carioferinas/fisiología , Lactancia/genética , Ratones , Ratones Noqueados , Receptores Citoplasmáticos y Nucleares/fisiología , Factor de Transcripción STAT5/fisiología , Proteína Exportina 1
2.
Nat Aging ; 2(1): 31-45, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-37118356

RESUMEN

Senescence is a fate-determined state, accompanied by reorganization of heterochromatin. Although lineage-appropriate genes can be temporarily repressed through facultative heterochromatin, stable silencing of lineage-inappropriate genes often involves the constitutive heterochromatic mark, histone H3 lysine 9 trimethylation (H3K9me3). The fate of these heterochromatic genes during senescence is unclear. In the present study, we show that a small number of lineage-inappropriate genes, exemplified by the LCE2 skin genes, are derepressed during senescence from H3K9me3 regions in fibroblasts. DNA FISH experiments reveal that these gene loci, which are condensed at the nuclear periphery in proliferative cells, are decompacted during senescence. Decompaction of the locus is not sufficient for LCE2 expression, which requires p53 and C/EBPß signaling. NLRP3, which is predominantly expressed in macrophages from an open topologically associated domain (TAD), is also derepressed in senescent fibroblasts due to the local disruption of the H3K9me3-rich TAD that contains it. NLRP3 has been implicated in the amplification of inflammatory cytokine signaling in senescence and aging, highlighting the functional relevance of gene induction from 'permissive' H3K9me3 regions in senescent cells.


Asunto(s)
Heterocromatina , Histonas , Heterocromatina/genética , Histonas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Senescencia Celular/genética , Expresión Génica
3.
Nat Commun ; 11(1): 6049, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247104

RESUMEN

Senescence is a state of stable proliferative arrest, generally accompanied by the senescence-associated secretory phenotype, which modulates tissue homeostasis. Enhancer-promoter interactions, facilitated by chromatin loops, play a key role in gene regulation but their relevance in senescence remains elusive. Here, we use Hi-C to show that oncogenic RAS-induced senescence in human diploid fibroblasts is accompanied by extensive enhancer-promoter rewiring, which is closely connected with dynamic cohesin binding to the genome. We find de novo cohesin peaks often at the 3' end of a subset of active genes. RAS-induced de novo cohesin peaks are transcription-dependent and enriched for senescence-associated genes, exemplified by IL1B, where de novo cohesin binding is involved in new loop formation. Similar IL1B induction with de novo cohesin appearance and new loop formation are observed in terminally differentiated macrophages, but not TNFα-treated cells. These results suggest that RAS-induced senescence represents a cell fate determination-like process characterised by a unique gene expression profile and 3D genome folding signature, mediated in part through cohesin redistribution on chromatin.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Senescencia Celular/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Transcripción Genética , Factor de Unión a CCCTC/metabolismo , Diferenciación Celular/genética , Línea Celular , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Sitios Genéticos , Genoma , Humanos , Interleucina-1/genética , Macrófagos/citología , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Proteínas ras/metabolismo , Cohesinas
4.
Nat Commun ; 11(1): 54, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31911579

RESUMEN

The architectural protein CTCF is a mediator of chromatin conformation, but how CTCF binding to DNA is orchestrated to maintain long-range gene expression is poorly understood. Here we perform RNAi knockdown to reduce CTCF levels and reveal a shared subset of CTCF-bound sites are robustly resistant to protein depletion. The 'persistent' CTCF sites are enriched at domain boundaries and chromatin loops constitutive to all cell types. CRISPR-Cas9 deletion of 2 persistent CTCF sites at the boundary between a long-range epigenetically active (LREA) and silenced (LRES) region, within the Kallikrein (KLK) locus, results in concordant activation of all 8 KLK genes within the LRES region. CTCF genome-wide depletion results in alteration in Topologically Associating Domain (TAD) structure, including the merging of TADs, whereas TAD boundaries are not altered where persistent sites are maintained. We propose that the subset of essential CTCF sites are involved in cell-type constitutive, higher order chromatin architecture.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Epigénesis Genética , Sitios de Unión , Factor de Unión a CCCTC/genética , Cromatina/química , Cromatina/genética , ADN/genética , ADN/metabolismo , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos
5.
Aging Cell ; 18(3): e12946, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30916891

RESUMEN

Interleukin-1 alpha (IL-1α) is a powerful cytokine that modulates immunity, and requires canonical cleavage by calpain for full activity. Mature IL-1α is produced after inflammasome activation and during cell senescence, but the protease cleaving IL-1α in these contexts is unknown. We show IL-1α is activated by caspase-5 or caspase-11 cleavage at a conserved site. Caspase-5 drives cleaved IL-1α release after human macrophage inflammasome activation, while IL-1α secretion from murine macrophages only requires caspase-11, with IL-1ß release needing caspase-11 and caspase-1. Importantly, senescent human cells require caspase-5 for the IL-1α-dependent senescence-associated secretory phenotype (SASP) in vitro, while senescent mouse hepatocytes need caspase-11 for the SASP-driven immune surveillance of senescent cells in vivo. Together, we identify IL-1α as a novel substrate of noncanonical inflammatory caspases and finally provide a mechanism for how IL-1α is activated during senescence. Thus, targeting caspase-5 may reduce inflammation and limit the deleterious effects of accumulated senescent cells during disease and Aging.


Asunto(s)
Caspasas/metabolismo , Senescencia Celular , Inflamasomas/metabolismo , Inflamación/metabolismo , Interleucina-1alfa/metabolismo , Animales , Células Cultivadas , Femenino , Células HeLa , Humanos , Interleucina-1alfa/análisis , Ratones , Ratones Endogámicos C57BL
6.
Nat Commun ; 9(1): 1840, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29743479

RESUMEN

Senescent cells interact with the surrounding microenvironment achieving diverse functional outcomes. We have recently identified that NOTCH1 can drive 'lateral induction' of a unique senescence phenotype in adjacent cells by specifically upregulating the NOTCH ligand JAG1. Here we show that NOTCH signalling can modulate chromatin structure autonomously and non-autonomously. In addition to senescence-associated heterochromatic foci (SAHF), oncogenic RAS-induced senescent (RIS) cells exhibit a massive increase in chromatin accessibility. NOTCH signalling suppresses SAHF and increased chromatin accessibility in this context. Strikingly, NOTCH-induced senescent cells, or cancer cells with high JAG1 expression, drive similar chromatin architectural changes in adjacent cells through cell-cell contact. Mechanistically, we show that NOTCH signalling represses the chromatin architectural protein HMGA1, an association found in multiple human cancers. Thus, HMGA1 is involved not only in SAHFs but also in RIS-driven chromatin accessibility. In conclusion, this study identifies that the JAG1-NOTCH-HMGA1 axis mediates the juxtacrine regulation of chromatin architecture.


Asunto(s)
Senescencia Celular , Receptor Notch1/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Proteína Jagged-1 , Receptor Notch1/genética , Transducción de Señal
8.
Nat Cell Biol ; 18(9): 979-92, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27525720

RESUMEN

Senescence, a persistent form of cell-cycle arrest, is often associated with a diverse secretome, which provides complex functionality for senescent cells within the tissue microenvironment. We show that oncogene-induced senescence is accompanied by a dynamic fluctuation of NOTCH1 activity, which drives a TGF-ß-rich secretome, while suppressing the senescence-associated pro-inflammatory secretome through inhibition of C/EBPß. NOTCH1 and NOTCH1-driven TGF-ß contribute to 'lateral induction of senescence' through a juxtacrine NOTCH-JAG1 pathway. In addition, NOTCH1 inhibition during senescence facilitates upregulation of pro-inflammatory cytokines, promoting lymphocyte recruitment and senescence surveillance in vivo. As enforced activation of NOTCH1 signalling confers a near mutually exclusive secretory profile compared with typical senescence, our data collectively indicate that the dynamic alteration of NOTCH1 activity during senescence dictates a functional balance between these two distinct secretomes: one representing TGF-ß and the other pro-inflammatory cytokines, highlighting that NOTCH1 is a temporospatial controller of secretome composition.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Receptor Notch1/metabolismo , Animales , Línea Celular Tumoral , Senescencia Celular , Humanos , Ratones Transgénicos , Receptor Notch1/genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA