Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell ; 185(4): 654-671.e22, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35065713

RESUMEN

Sex hormones exert a profound influence on gendered behaviors. How individual sex hormone-responsive neuronal populations regulate diverse sex-typical behaviors is unclear. We performed orthogonal, genetically targeted sequencing of four estrogen receptor 1-expressing (Esr1+) populations and identified 1,415 genes expressed differentially between sexes or estrous states. Unique subsets of these genes were distributed across all 137 transcriptomically defined Esr1+ cell types, including estrous stage-specific ones, that comprise the four populations. We used differentially expressed genes labeling single Esr1+ cell types as entry points to functionally characterize two such cell types, BNSTprTac1/Esr1 and VMHvlCckar/Esr1. We observed that these two cell types, but not the other Esr1+ cell types in these populations, are essential for sex recognition in males and mating in females, respectively. Furthermore, VMHvlCckar/Esr1 cell type projections are distinct from those of other VMHvlEsr1 cell types. Together, projection and functional specialization of dimorphic cell types enables sex hormone-responsive populations to regulate diverse social behaviors.


Asunto(s)
Ciclo Estral/genética , Regulación de la Expresión Génica , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Agresión , Animales , Aromatasa/metabolismo , Trastorno Autístico/genética , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neuronas/metabolismo , Conducta Social
3.
Nucleic Acids Res ; 51(19): 10218-10237, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37697438

RESUMEN

The seat of higher-order cognitive abilities in mammals, the neocortex, is a complex structure, organized in several layers. The different subtypes of principal neurons are distributed in precise ratios and at specific positions in these layers and are generated by the same neural progenitor cells (NPCs), steered by a spatially and temporally specified combination of molecular cues that are incompletely understood. Recently, we discovered that an alternatively spliced isoform of the TrkC receptor lacking the kinase domain, TrkC-T1, is a determinant of the corticofugal projection neuron (CFuPN) fate. Here, we show that the finely tuned balance between TrkC-T1 and the better known, kinase domain-containing isoform, TrkC-TK+, is cell type-specific in the developing cortex and established through the antagonistic actions of two RNA-binding proteins, Srsf1 and Elavl1. Moreover, our data show that Srsf1 promotes the CFuPN fate and Elavl1 promotes the callosal projection neuron (CPN) fate in vivo via regulating the distinct ratios of TrkC-T1 to TrkC-TK+. Taken together, we connect spatio-temporal expression of Srsf1 and Elavl1 in the developing neocortex with the regulation of TrkC alternative splicing and transcript stability and neuronal fate choice, thus adding to the mechanistic and functional understanding of alternative splicing in vivo.


Asunto(s)
Neocórtex , Receptor trkC , Animales , Empalme Alternativo , Mamíferos/metabolismo , Neocórtex/metabolismo , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor trkC/química , Receptor trkC/genética , Receptor trkC/metabolismo , Ratones , Línea Celular Tumoral
4.
Cereb Cortex ; 31(12): 5470-5486, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34259839

RESUMEN

Neocortical projection neurons are generated by neural progenitor cells (NPCs) within the ventricular and subventricular zone. While early NPCs can give rise to both deep and upper layer neurons, late progenitors are restricted to upper layer neurogenesis. The molecular mechanisms controlling the differentiation potential of early versus late NPCs are unknown. Here, we report a novel function for TrkC-T1, the non-catalytic isoform of the neurotrophin receptor TrkC, that is distinct from TrkC-TK+, the full-length isoform. We provide direct evidence that TrkC-T1 regulates the switch in NPC fate from deep to upper layer neuron production. Elevated levels of TrkC-T1 in early NPCs promote the generation of deep layer neurons. Conversely, downregulation of TrkC-T1 in these cells promotes upper layer neuron fate. Furthermore, we show that TrkC-T1 exerts this control by interaction with the signaling adaptor protein ShcA. TrkC-T1 prevents the phosphorylation of Shc and the downstream activation of the MAP kinase (Erk1/2) pathway. In vivo manipulation of the activity of ShcA or Erk1/2, directly affects cortical neuron cell fate. We thus show that the generation of upper layer neurons by late progenitors is dependent on the downregulation of TrkC-T1 in late progenitor cells and the resulting activation of the ShcA/Erk1/2 pathway.


Asunto(s)
Neocórtex , Células-Madre Neurales , Neocórtex/metabolismo , Células-Madre Neurales/metabolismo , Isoformas de Proteínas/metabolismo , Receptor trkC , Transducción de Señal/fisiología
5.
Genes Dev ; 26(15): 1743-57, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22810622

RESUMEN

Neocortical neurons have highly branched dendritic trees that are essential for their function. Indeed, defects in dendritic arborization are associated with human neurodevelopmental disorders. The molecular mechanisms regulating dendritic arbor complexity, however, are still poorly understood. Here, we uncover the molecular basis for the regulation of dendritic branching during cortical development. We show that during development, dendritic branching requires post-mitotic suppression of the RhoGTPase Cdc42. By generating genetically modified mice, we demonstrate that this is catalyzed in vivo by the novel Cdc42-GAP NOMA-GAP. Loss of NOMA-GAP leads to decreased neocortical volume, associated specifically with profound oversimplification of cortical dendritic arborization and hyperactivation of Cdc42. Remarkably, dendritic complexity and cortical thickness can be partially restored by genetic reduction of post-mitotic Cdc42 levels. Furthermore, we identify the actin regulator cofilin as a key regulator of dendritic complexity in vivo. Cofilin activation during late cortical development depends on NOMA-GAP expression and subsequent inhibition of Cdc42. Strikingly, in utero expression of active cofilin is sufficient to restore postnatal dendritic complexity in NOMA-GAP-deficient animals. Our findings define a novel cell-intrinsic mechanism to regulate dendritic branching and thus neuronal complexity in the cerebral cortex.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Dendritas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Células Cultivadas , Femenino , Proteínas Activadoras de GTPasa/genética , Ratones , Ratones Transgénicos
6.
Development ; 141(17): 3324-30, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25085976

RESUMEN

Cortical progenitors undergo progressive fate restriction, thereby sequentially producing the different layers of the neocortex. However, how these progenitors precisely change their fate remains highly debatable. We have previously shown the existence of cortical feedback mechanisms wherein postmitotic neurons signal back to the progenitors and promote a switch from neurogenesis to gliogenesis. We showed that Sip1 (Zeb2), a transcriptional repressor, controls this feedback signaling. A similar mechanism was also suggested to control neuronal cell type specification; however, the underlying mechanism was not identified. Here, we provide direct evidence that in the developing mouse neocortex, Ntf3, a Sip1 target neurotrophin, acts as a feedback signal between postmitotic neurons and progenitors, promoting both apical progenitor (AP) to basal progenitor (BP) and deep layer (DL) to upper layer (UL) cell fate switches. We show that specific overexpression of Ntf3 in neocortical neurons promotes an overproduction of BP at the expense of AP. This shift is followed by a decrease in DL and an increase in UL neuronal production. Loss of Ntf3, by contrast, causes an increase in layer VI neurons but does not rescue the Sip1 mutant phenotype, implying that other parallel pathways also control the timing of progenitor cell fate switch.


Asunto(s)
Linaje de la Célula , Retroalimentación Fisiológica , Mitosis , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Neuronas/citología , Neurotrofina 3/metabolismo , Transducción de Señal , Animales , Recuento de Células , Corteza Cerebral , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Eliminación de Gen , Masculino , Ratones , Mosaicismo , Mutación/genética , Neurogénesis , Fenotipo , Regulación hacia Arriba
7.
Proc Natl Acad Sci U S A ; 109(9): 3546-51, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22334647

RESUMEN

First insights into the molecular programs orchestrating the progression from neural stem cells to cortical projection neurons are emerging. Loss of the transcriptional regulator Ski has been linked to the human 1p36 deletion syndrome, which includes central nervous system defects. Here, we report critical roles for Ski in the maintenance of the neural stem cell pool and the specification of callosal neurons. Ski-deficient callosal neurons lose their identity and ectopically express the transcription factor Ctip2. The misspecified callosal neurons largely fail to form the corpus callosum and instead redirect their axons toward subcortical targets. We identify the chromatin-remodeling factor Satb2 as a partner of Ski, and show that both proteins are required for transcriptional repression of Ctip2 in callosal neurons. We propose a model in which Satb2 recruits Ski to the Ctip2 locus, and Ski attracts histone deacetylases, thereby enabling the formation of a functional nucleosome remodeling and deacetylase repressor complex. Our findings establish a central role for Ski-Satb2 interactions in regulating transcriptional mechanisms of callosal neuron specification.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cuerpo Calloso/citología , Proteínas de Unión al ADN/fisiología , Proteínas de Unión a la Región de Fijación a la Matriz/fisiología , Proteínas del Tejido Nervioso/fisiología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas/fisiología , Proteínas Represoras/biosíntesis , Factores de Transcripción/fisiología , Proteínas Supresoras de Tumor/biosíntesis , Agenesia del Cuerpo Calloso/embriología , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/patología , Animales , Axones/ultraestructura , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/deficiencia , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Ratones , Ratones Noqueados , Ratones Mutantes Neurológicos , Modelos Genéticos , Complejos Multiproteicos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Nucleosomas/metabolismo , Mapeo de Interacción de Proteínas , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
8.
Dev Biol ; 366(2): 341-56, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22546691

RESUMEN

The rostral migratory stream (RMS) is composed of neuroblasts migrating from the striatal SVZ to the olfactory bulb through a meshwork of GFAP- expressing astrocytes called the glial tube. So far, the origin of the glial tube astrocytes was attributed to differentiation of Type-B stem cells of the striatal SVZ. The true identity of these cells (Type-B stem cells versus immature/mature astrocytes) is also unclear. By analyzing a neocortex-specific conditional knockout of the transcriptional repressor Sip1 (Smad-interacting protein 1), we have now identified a novel pool of progenitors located within the dorsal SVZ (dSVZ) at early postnatal stages that differentiate into GFAP+ cells of the glial tube. We show that Sip1, expressed in postmitotic cortical neurons, controls the size of this dorsal progenitor pool possibly through cell-extrinsic mechanisms. Lack of Sip1 in the neocortex causes an expansion of this population leading to an increased production of GFAP+ astrocytes/Type-B stem cells in the glial tube, and a denser intercalation of these cells with Dcx+ neuroblasts of the RMS, the consequence of which is not yet clear. Neocortex-specific Sip1 deletion also led to an expansion of Dcx+ and Tbr2+ progenitor populations in the dSVZ. We show that the dSVZ progenitors (possibly remnants of embryonic radial glia) differentiate exclusively into BLBP+ cells which migrate into the RMS and mature into GFAP+ astrocytes/Type-B stem cells at around two weeks of postnatal development. In summary, our work shows that Sip1 controls the generation of GFAP+ cells of the RMS by regulating the size of a novel progenitor pool located in the postnatal dSVZ.


Asunto(s)
Proteínas Portadoras/fisiología , Movimiento Celular , Neocórtex/citología , Proteínas del Tejido Nervioso , Animales , Comunicación Celular , Diferenciación Celular , Proteína Doblecortina , Proteína Ácida Fibrilar de la Glía , Ratones , Morfogénesis , Neocórtex/fisiología , Proteínas de Unión al ARN , Células Madre/citología , Células Madre/fisiología
9.
Cell Rep ; 27(9): 2527-2536.e4, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31141679

RESUMEN

Genetically wired neural mechanisms inhibit mating between species because even naive animals rarely mate with other species. These mechanisms can evolve through changes in expression or function of key genes in sensory pathways or central circuits. Gr32a is a gustatory chemoreceptor that, in D. melanogaster, is essential to inhibit interspecies courtship and sense quinine. Similar to D. melanogaster, we find that D. simulans Gr32a is expressed in foreleg tarsi, sensorimotor appendages that inhibit interspecies courtship, and it is required to sense quinine. Nevertheless, Gr32a is not required to inhibit interspecies mating by D. simulans males. However, and similar to its function in D. melanogaster, Ppk25, a member of the Pickpocket family, promotes conspecific courtship in D. simulans. Together, we have identified distinct evolutionary mechanisms underlying chemosensory control of taste and courtship in closely related Drosophila species.


Asunto(s)
Evolución Biológica , Cortejo/psicología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Drosophila simulans/fisiología , Receptores de Superficie Celular/metabolismo , Conducta Sexual Animal , Gusto/fisiología , Animales , Comunicación Celular , Células Quimiorreceptoras , Proteínas de Drosophila/genética , Femenino , Masculino , Feromonas , Receptores de Superficie Celular/genética , Reproducción
10.
Neuron ; 85(5): 998-1012, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25741725

RESUMEN

Sip1 is an important transcription factor that regulates several aspects of CNS development. Mutations in the human SIP1 gene have been implicated in Mowat-Wilson syndrome (MWS), characterized by severe mental retardation and agenesis of the corpus callosum. In this study we have shown that Sip1 is essential for the formation of intracortical, intercortical, and cortico-subcortical connections in the murine forebrain. Sip1 deletion from all postmitotic neurons in the neocortex results in lack of corpus callosum, anterior commissure, and corticospinal tract formation. Mosaic deletion of Sip1 in the neocortex reveals defects in axonal growth and in ipsilateral intracortical-collateral formation. Sip1 mediates these effects through its direct downstream effector ninein, a microtubule binding protein. Ninein in turn influences the rate of axonal growth and branching by affecting microtubule stability and dynamics.


Asunto(s)
Axones/fisiología , Proteínas del Citoesqueleto/fisiología , Microtúbulos/fisiología , Neocórtex/citología , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas Nucleares/fisiología , Animales , Células Cultivadas , Cuerpo Calloso/citología , Cuerpo Calloso/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Prosencéfalo/citología , Prosencéfalo/metabolismo
11.
Elife ; 42015 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-25556700

RESUMEN

miR-128, a brain-enriched microRNA, has been implicated in the control of neurogenesis and synaptogenesis but its potential roles in intervening processes have not been addressed. We show that post-transcriptional mechanisms restrict miR-128 accumulation to post-mitotic neurons during mouse corticogenesis and in adult stem cell niches. Whereas premature miR-128 expression in progenitors for upper layer neurons leads to impaired neuronal migration and inappropriate branching, sponge-mediated inhibition results in overmigration. Within the upper layers, premature miR-128 expression reduces the complexity of dendritic arborization, associated with altered electrophysiological properties. We show that Phf6, a gene mutated in the cognitive disorder Börjeson-Forssman-Lehmann syndrome, is an important regulatory target for miR-128. Restoring PHF6 expression counteracts the deleterious effect of miR-128 on neuronal migration, outgrowth and intrinsic physiological properties. Our results place miR-128 upstream of PHF6 in a pathway vital for cortical lamination as well as for the development of neuronal morphology and intrinsic excitability.


Asunto(s)
Movimiento Celular , Proteínas de Homeodominio/genética , Discapacidad Intelectual/genética , MicroARNs/metabolismo , Neuronas/metabolismo , Neuronas/patología , Envejecimiento/metabolismo , Animales , Forma de la Célula , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Dendritas/metabolismo , Epilepsia/genética , Cara/anomalías , Dedos/anomalías , Regulación del Desarrollo de la Expresión Génica , Trastornos del Crecimiento/genética , Proteínas de Homeodominio/metabolismo , Hipogonadismo/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Ratones , MicroARNs/genética , Obesidad/genética , Precursores del ARN/metabolismo , Proteínas Represoras , Nicho de Células Madre , Factores de Tiempo , Transcripción Genética
12.
Nat Commun ; 5: 3708, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-24739528

RESUMEN

The pyramidal neurons of the mammalian neocortex form two major types of long-range connections-corticocortical and cortico-subcortical. The transcription factors Satb2 and Ctip2 are critical regulators of neuronal cell fate that control interhemispheric versus corticofugal connections respectively. Here, we investigate the axon guidance molecules downstream of Satb2 and Ctip2 that establish these connections. We show that the expression of two Netrin1 receptors- DCC and Unc5C is under direct negative regulation by Satb2 and Ctip2, respectively. Further, we show that the Netrin1-Unc5C/DCC interaction is involved in controlling the interhemispherical projection in a subset of early born, deep layer callosal neurons.


Asunto(s)
Cuerpo Calloso/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Morfogénesis/fisiología , Receptores de Superficie Celular/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Inmunoprecipitación de Cromatina , Receptor DCC , Cartilla de ADN/genética , Electroporación/métodos , Hibridación in Situ , Luciferasas , Ratones , Receptores de Netrina , Plásmidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA