Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Dev Dyn ; 251(11): 1780-1797, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35656583

RESUMEN

BACKGROUND: POLR1D is a subunit of RNA Polymerases I and III, which synthesize ribosomal RNAs. Dysregulation of these polymerases cause several types of diseases, including ribosomopathies. The craniofacial disorder Treacher Collins Syndrome (TCS) is a ribosomopathy caused by mutations in several subunits of RNA Polymerase I, including POLR1D. Here, we characterized the effect of a missense mutation in POLR1D and RNAi knockdown of POLR1D on Drosophila development. RESULTS: We found that a missense mutation in Drosophila POLR1D (G30R) reduced larval rRNA levels, slowed larval growth, and arrested larval development. Remarkably, the G30R substitution is at an orthologous glycine in POLR1D that is mutated in a TCS patient (G52E). We showed that the G52E mutation in human POLR1D, and the comparable substitution (G30E) in Drosophila POLR1D, reduced their ability to heterodimerize with POLR1C in vitro. We also found that POLR1D is required early in the development of Drosophila neural cells. Furthermore, an RNAi screen revealed that POLR1D is also required for development of non-neural Drosophila cells, suggesting the possibility of defects in other cell types. CONCLUSIONS: These results establish a role for POLR1D in Drosophila development, and present Drosophila as an attractive model to evaluate the molecular defects of TCS mutations in POLR1D.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Proteínas de Drosophila , Drosophila , Disostosis Mandibulofacial , Animales , Humanos , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/fisiología , Drosophila/embriología , Drosophila/genética , Disostosis Mandibulofacial/genética , Mutación , Fosfoproteínas/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología
2.
Mol Cell Biol ; 43(6): 269-282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37222571

RESUMEN

Eukaryotic DNA-dependent RNA polymerases (Pols I-III) encode two distinct alpha-like heterodimers where one is shared between Pols I and III, and the other is unique to Pol II. Human alpha-like subunit mutations are associated with several diseases including Treacher Collins Syndrome (TCS), 4H leukodystrophy, and primary ovarian sufficiency. Yeast is commonly used to model human disease mutations, yet it remains unclear whether the alpha-like subunit interactions are functionally similar between yeast and human homologs. To examine this, we mutated several regions of the yeast and human small alpha-like subunits and used biochemical and genetic assays to establish the regions and residues required for heterodimerization with their corresponding large alpha-like subunits. Here we show that different regions of the small alpha-like subunits serve differential roles in heterodimerization, in a polymerase- and species-specific manner. We found that the small human alpha-like subunits are more sensitive to mutations, including a "humanized" yeast that we used to characterize the molecular consequence of the TCS-causingPOLR1D G52E mutation. These findings help explain why some alpha subunit associated disease mutations have little to no effect when made in their yeast orthologs and offer a better yeast model to assess the molecular basis of POLR1D associated disease mutations.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa I/genética , Células Eucariotas/metabolismo , ARN Polimerasa III/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA