Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biology (Basel) ; 13(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38534424

RESUMEN

Multiple sclerosis (MS) is a debilitating neurological disease that has been classified as an immune-mediated attack on myelin, the protective sheath of nerves. Some aspects of its pathogenesis are still unclear; nevertheless, it is generally established that viral infections influence the course of the disease. Cytomegalovirus (CMV) is a major pathogen involved in alterations of the immune system, including the expansion of highly differentiated cytotoxic CD8+ T cells and the accumulation of adaptive natural killer (NK) cells expressing high levels of the NKG2C receptor. In this study, we evaluated the impact of latent CMV infection on MS patients through the characterization of peripheral NK cells, CD8+ T cells, and NKT-like cells using flow cytometry. We evaluated the associations between immune cell profiles and clinical features such as MS duration and MS progression, evaluated using the Expanded Disability Status Scale (EDSS). We showed that NK cells, CD8+ T cells, and NKT-like cells had an altered phenotype in CMV-infected MS patients and displayed high levels of the NKG2C receptor. Moreover, in MS patients, increased NKG2C expression levels were found to be associated with higher EDSS scores. Overall, these results support the hypothesis that CMV infection imprints the immune system by modifying the phenotype and receptor repertoire of NK and CD8+ T cells, suggesting a detrimental role of CMV on MS progression.

2.
Clin Pract ; 14(3): 685-702, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38804387

RESUMEN

Background: SARS-CoV-2 is the coronavirus responsible for the COVID-19 pandemic. Even though we are no longer in a pandemic situation, people are still getting infected, some of them need hospitalization and a few of them die. Methods: We conducted a retrospective study including 445 patients who accessed the Emergency Section of Policlinico Umberto I, Rome, Italy, where they had routine blood exams. In this study, we focused on the complete blood count, serum creatinine and azotemia. The data were analyzed using ANOVA, Spearman correlation and ROC analyses. They were divided into four groups based on their clinical outcomes: (1) the emergency group (patients who had mild forms and were quickly discharged); (2) the hospital ward group (patients who were admitted to the emergency section and were then hospitalized in a COVID-19 ward); (3) the intensive care unit (ICU) group (patients who required intensive assistance after the admission in the emergency section); (4) the deceased group (patients who had a fatal outcome after admission to the emergency section). Results: We found significant changes for creatinine, azotemia, hematocrit, mean corpuscular hemoglobin concentration, basophils, monocytes, red blood cell distribution width, hemoglobin, hematocrit and red blood cell numbers using ANOVA according to their clinical outcomes, particularly for the deceased group. Also, we found linear correlations of clinical outcomes with eosinophils, hemoglobin, hematocrit, mean corpuscular hemoglobin concentration, lymphocyte, neutrophil, platelet and red blood cell number and red blood cell distribution width. Conclusions: This study discloses an early association between "classical" routine blood biomarkers and the severity of clinical outcomes in Omicron patients.

3.
Pain ; 165(9): 2002-2010, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723183

RESUMEN

ABSTRACT: Approximately 10% to 20% of individuals with previous SARS-CoV-2 infection may develop long-COVID syndrome, characterized by various physical and mental health issues, including pain. Previous studies suggested an association between small fibre neuropathy and pain in long-COVID cases. In this case-control study, our aim was to identify small fibre neuropathy in patients experiencing painful long-COVID syndrome. Clinical data, quantitative sensory testing, and skin biopsies were collected from 26 selected patients with painful long-COVID syndrome. We also examined 100 individuals with past COVID-19 infection, selecting 33 patients with painless long-COVID syndrome, characterized mainly by symptoms such as brain fog and fatigue, and 30 asymptomatic post-COVID-19 controls. Demographic and clinical variables were compared among these groups. Among the 26 patients with painful long-COVID syndrome, 12 had skin biopsy and/or quantitative sensory testing abnormalities compatible with small fibre neuropathy. Demographic and clinical data did not differ across patients with small fibre neuropathy, patients with painless long-COVID syndrome, and asymptomatic post-COVID-19 controls. This case-control study showed that approximately 50% of patients experiencing painful long-COVID syndrome had small fibre neuropathy. However, in our patient cohort, this specific post-COVID-19 complication was unrelated to demographic and COVID-19 clinical variables. Approximately half of our sample of patients with painful long-COVID symptoms met diagnostic criteria for small fibre neuropathy.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Neuropatía de Fibras Pequeñas , Humanos , Neuropatía de Fibras Pequeñas/diagnóstico , Neuropatía de Fibras Pequeñas/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , COVID-19/complicaciones , Estudios de Casos y Controles , Adulto , Anciano , Piel/patología , SARS-CoV-2 , Biopsia
4.
Res Pract Thromb Haemost ; 7(8): 102262, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38193050

RESUMEN

Background: Severe COVID-19 is associated with an excessive immunothrombotic response and thromboinflammatory complications. Vaccinations effectively reduce the risk of severe clinical outcomes in patients with COVID-19, but their impact on platelet activation and immunothrombosis during breakthrough infections is not known. Objectives: To investigate how preemptive vaccinations modify the platelet-immune crosstalk during COVID-19 infections. Methods: Cross-sectional flow cytometry study of the phenotype and interactions of platelets circulating in vaccinated (n = 21) and unvaccinated patients with COVID-19, either admitted to the intensive care unit (ICU, n = 36) or not (non-ICU, n = 38), in comparison to matched SARS-CoV-2-negative patients (n = 48), was performed. Results: In the circulation of unvaccinated non-ICU patients with COVID-19, we detected hyperactive and hyperresponsive platelets and platelet aggregates with adaptive and innate immune cells. In unvaccinated ICU patients with COVID-19, most of whom had severe acute respiratory distress syndrome, platelets had high P-selectin and phosphatidylserine exposure but low capacity to activate integrin αIIbß3, dysfunctional mitochondria, and reduced surface glycoproteins. In addition, in the circulation of ICU patients, we detected microthrombi and platelet aggregates with innate, but not with adaptive, immune cells. In vaccinated patients with COVID-19, who had no acute respiratory distress syndrome, platelets had surface receptor levels comparable to those in controls and did not form microthrombi or platelet-granulocyte aggregates but aggregated avidly with adaptive immune cells. Conclusion: Our study provides evidence that vaccinated patients with COVID-19 are not associated with platelet hyperactivation and are characterized by platelet-leukocyte aggregates that foster immune protection but not excessive immunothrombosis. These findings advocate for the importance of vaccination in preventing severe COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA