Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339184

RESUMEN

The skin is the primary tissue affected by wounds and aging, significantly impacting its protective function. Natural products are widely used in cosmetics, representing a new approach to preventing age-related damage. Nanomedicine combines nanotechnology and traditional treatments to create innovative drugs. The main targets of nanotechnological approaches are wound healing, regeneration, and rejuvenation of skin tissue. The skin barrier is not easily permeable, and the creation of modern nanodevices is a way to improve the passive penetration of substances. In this study, Helichrysum italicum oil (HO) was combined with different types of electrospun nanofibers to study their protective activity on the skin and to evaluate their future application for topical treatments. In the present research, we used biodegradable polymers, including polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), which were characterized by a scanning electron microscope (SEM). All results show a positive trend in cell proliferation and viability of human skin stem cells (SSCs) and BJ fibroblasts pre-treated with combined nanofibers and then exposed to UV stress. Gene expression analysis revealed the activation of a molecular rejuvenation program in SSCs treated with functionalized nanofibers before UV exposure. Understanding the mechanisms involved in skin changes during aging allows for the future application of nanomaterials combined with HO directly to the patients.


Asunto(s)
Productos Biológicos , Nanofibras , Envejecimiento de la Piel , Humanos , Productos Biológicos/farmacología , Piel , Cicatrización de Heridas , Alcohol Polivinílico
2.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35743278

RESUMEN

MicroRNAs (miRNA) are key regulators of gene expression, controlling different biological processes such as cellular development, differentiation, proliferation, metabolism, and apoptosis. The relationships between miRNA expression and the onset and progression of different diseases, such as tumours, cardiovascular and rheumatic diseases, and neurological disorders, are well known. A nanotechnology-based approach could match miRNA delivery and detection to move beyond the proof-of-concept stage. Different kinds of nanotechnologies can have a major impact on the diagnosis and treatment of miRNA-related diseases such as cancer. Developing novel methodologies aimed at clinical practice represents a big challenge for the early diagnosis of specific diseases. Within this context, nanotechnology represents a wide emerging area at the forefront of research over the last two decades, whose potential has yet to be fully attained. Nanomedicine, derived from nanotechnology, can exploit the unique properties of nanometer-sized particles for diagnostic and therapeutic purposes. Through nanomedicine, specific treatment to counteract only cancer-cell proliferation will be improved, while leaving healthy cells intact. In this review, we dissect the properties of different nanocarriers and their roles in the early detection and treatment of cancer.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/metabolismo , Nanomedicina , Nanotecnología/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia
3.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35163550

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNA molecules that play a role in cancer linked to the regulation of important cellular processes and pathways involving tumorigenesis, cell proliferation, differentiation, and apoptosis. A lot of human miRNA sequences have been identified which are linked to cancer pathogenesis. MicroRNAs, in prostate cancer (PC), play a relevant role as biomarkers, show a specific profile, and have been used as therapeutic targets. Prostate cancer (PC) is the most frequently diagnosed cancer in men. Clinical diagnoses among the gold standards for PC diagnosis and monitoring are prostate-specific antigen (PSA) testing, digital rectal examination, and prostate needle biopsies. PSA screening still has a large grey area of patients, which leads to overdiagnosis. Therefore, new biomarkers are needed to improve existing diagnostic tools. The miRNA expression profiles from tumour versus normal tissues are helpful and exhibit significant differences not only between cancerous and non-cancerous tissues, but also between different cancer types and subtypes. In this review, we focus on the role of miRNAs-145, 148, and 185 and their correlation with stem cells in prostate cancer pathogenesis. MiR-145, by modulating multiple oncogenes, regulates different cellular processes in PC, which are involved in the transition from localised to metastatic disease. MiR-148 is downregulated in high-grade tumours, suggesting that the miR-148-3 family might act as tumour suppressors in PC as a potential biomarker for detecting this disease. MiR-185 regulation is still unclear in being able to regulate tumour processes in PC. Nevertheless, other authors confirm the role of this miRNA as a tumour suppressor, suggesting its potential use as a suitable biomarker in disease prognosis. These three miRNAs are all involved in the regulation of prostate cancer stem cell behaviour (PCSCs). Within this contest, PCSCs are often involved in the onset of chemo-resistance in PC, therefore strategies for targeting this subset of cells are strongly required to control the disease. Hence, the relationship between these two players is interesting and important in prostate cancer pathogenesis and in PCSC stemness regulation, in the attempt to pave the way for novel therapeutic targets in prostate cancer.


Asunto(s)
MicroARNs/genética , Células Madre Neoplásicas/patología , Neoplasias de la Próstata/patología , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Masculino , Clasificación del Tumor , Células Madre Neoplásicas/química , Pronóstico , Neoplasias de la Próstata/genética
4.
Gels ; 8(3)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35323271

RESUMEN

Dead space after rectal resection in colorectal surgery is an area with a high risk of complications. In this study, our goal was to develop a novel 3D implant based on composite hydrogels enriched with fractionalized nanofibers. We employed, as a novel approach in abdominal surgery, the application of agarose gels functionalized with fractionalized nanofibers on pieces dozens of microns large with a well-preserved nano-substructure. This retained excellent cell accommodation and proliferation, while nanofiber structures in separated islets allowed cells a free migration throughout the gel. We found these low-concentrated fractionalized nanofibers to be a good tool for structural and biomechanical optimization of the 3D hydrogel implants. In addition, this nano-structuralized system can serve as a convenient drug delivery system for a controlled release of encapsulated bioactive substances from the nanofiber core. Thus, we present novel 3D nanofiber-based gels for controlled release, with a possibility to modify both their biomechanical properties and drug release intended for 3D lesions healing after a rectal extirpation, hysterectomy, or pelvic exenteration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA