Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 618(7967): 1078-1084, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37344591

RESUMEN

Numerous studies have shown how RNA molecules can adopt elaborate three-dimensional (3D) architectures1-3. By contrast, whether DNA can self-assemble into complex 3D folds capable of sophisticated biochemistry, independent of protein or RNA partners, has remained mysterious. Lettuce is an in vitro-evolved DNA molecule that binds and activates4 conditional fluorophores derived from GFP. To extend previous structural studies5,6 of fluorogenic RNAs, GFP and other fluorescent proteins7 to DNA, we characterize Lettuce-fluorophore complexes by X-ray crystallography and cryogenic electron microscopy. The results reveal that the 53-nucleotide DNA adopts a four-way junction (4WJ) fold. Instead of the canonical L-shaped or H-shaped structures commonly seen8 in 4WJ RNAs, the four stems of Lettuce form two coaxial stacks that pack co-linearly to form a central G-quadruplex in which the fluorophore binds. This fold is stabilized by stacking, extensive nucleobase hydrogen bonding-including through unusual diagonally stacked bases that bridge successive tiers of the main coaxial stacks of the DNA-and coordination of monovalent and divalent cations. Overall, the structure is more compact than many RNAs of comparable size. Lettuce demonstrates how DNA can form elaborate 3D structures without using RNA-like tertiary interactions and suggests that new principles of nucleic acid organization will be forthcoming from the analysis of complex DNAs.


Asunto(s)
ADN , Proteínas Fluorescentes Verdes , Imitación Molecular , Conformación de Ácido Nucleico , ADN/química , ADN/ultraestructura , G-Cuádruplex , ARN/química , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/ultraestructura , Cristalografía por Rayos X , Microscopía por Crioelectrón , Enlace de Hidrógeno , Cationes Bivalentes/química , Cationes Monovalentes/química
2.
RNA ; 30(7): 760-769, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38565243

RESUMEN

RNA thermometers are highly structured noncoding RNAs located in the 5'-untranslated regions (UTRs) of genes that regulate expression by undergoing conformational changes in response to temperature. The discovery of RNA thermometers through bioinformatics is difficult because there is little sequence conservation among their structural elements. Thus, the abundance of these thermosensitive regulatory structures remains unclear. Herein, to advance the discovery and validation of RNA thermometers, we developed Robo-Therm, a pipeline that combines an adaptive and user-friendly in silico motif search with a well-established reporter system. Through our application of Robo-Therm, we discovered two novel RNA thermometers in bacterial and bacteriophage genomes found in the human gut. One of these thermometers is present in the 5'-UTR of a gene that codes for σ 70 RNA polymerase subunit in the bacteria Mediterraneibacter gnavus and Bacteroides pectinophilus, and in the bacteriophage Caudoviricetes, which infects B. pectinophilus The other thermometer is in the 5'-UTR of a tetracycline resistance gene (tetR) in the intestinal bacteria Escherichia coli and Shigella flexneri Our Robo-Therm pipeline can be applied to discover multiple RNA thermometers across various genomes.


Asunto(s)
Regiones no Traducidas 5' , Humanos , Biología Computacional/métodos , Bacteriófagos/genética , Bacteroides/genética , Bacteroides/virología , ARN Bacteriano/genética , Conformación de Ácido Nucleico , ARN Viral/genética
3.
Nucleic Acids Res ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38945550

RESUMEN

Fluorogenic RNA aptamer tags with high affinity enable RNA purification and imaging. The G-quadruplex (G4) based Mango (M) series of aptamers were selected to bind a thiazole orange based (TO1-Biotin) ligand. Using a chemical biology and reselection approach, we have produced a MII.2 aptamer-ligand complex with a remarkable set of properties: Its unprecedented KD of 45 pM, formaldehyde resistance (8% v/v), temperature stability and ligand photo-recycling properties are all unusual to find simultaneously within a small RNA tag. Crystal structures demonstrate how MII.2, which differs from MII by a single A23U mutation, and modification of the TO1-Biotin ligand to TO1-6A-Biotin achieves these results. MII binds TO1-Biotin heterogeneously via a G4 surface that is surrounded by a stadium of five adenosines. Breaking this pseudo-rotational symmetry results in a highly cooperative and homogeneous ligand binding pocket: A22 of the G4 stadium stacks on the G4 binding surface while the TO1-6A-Biotin ligand completely fills the remaining three quadrants of the G4 ligand binding face. Similar optimization attempts with MIII.1, which already binds TO1-Biotin in a homogeneous manner, did not produce such marked improvements. We use the novel features of the MII.2 complex to demonstrate a powerful optically-based RNA purification system.


Artificial RNA tags that tightly bind fluorogenic ligands have many RNA imaging and RNA-protein biomolecular purification applications. Here, we report and structurally characterize a very small (20-nt) biologically compatible G-quadruplex based aptamer that can be inserted into commonly found GNRA tetraloops. This aptamer binds its fluorogenic ligand with an unprecedented picomolar binding affinity and is very stable against thermal and chemical insults. As the ligand can be modified to include biotin, this RNA tag can also be bound to streptavidin magnetic beads. After washing, tagged RNA can be cleanly eluted by exposing the beads to intense green light, which photobleaches the bound fluorogenic ligand, triggering the release of the bound RNA complex.

4.
J Biol Chem ; 298(6): 101934, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35427649

RESUMEN

Unlike most riboswitches, which have one cognate effector, the bacterial yjdF riboswitch binds to diverse azaaromatic compounds, only a subset of which cause it to activate translation. We examined the yjdF aptamer domain by small-angle X-ray scattering and found that in the presence of activating ligands, the RNA adopts an overall shape similar to that of tRNA. Sequence analyses suggested that the yjdF aptamer is a homolog of tRNALys, and that two of the conserved loops of the riboswitch are equivalent to the D-loop and T-loop of tRNA, associating to form an elbow-like tertiary interaction. Chemical probing indicated that this association is promoted by activating ligands such as chelerythrine and harmine. In its native mRNA context, activator ligands stabilize the tRNA-like fold of the yjdF aptamer, outcompeting the attenuated state in which its T-loop base pairs to the Shine-Dalgarno element of the mRNA. Moreover, we demonstrate that the liganded aptamer itself activates translation, as authentic tRNAs, when grafted into mRNA, can potently activate translation. Taken together, our data demonstrate the ability of tRNA to function as a small-molecule responsive cis regulatory element.


Asunto(s)
Bacterias , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano , Riboswitch , Bacterias/genética , Bacterias/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Ligandos , Conformación de Ácido Nucleico , Estabilidad del ARN , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo
5.
RNA ; 26(12): 2062-2071, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32958559

RESUMEN

RNA molecules can be conveniently synthesized in vitro by the T7 RNA polymerase (T7 RNAP). In some experiments, such as cotranscriptional biochemical analyses, continuous synthesis of RNA is not desired. Here, we propose a method for a single-pass transcription that yields a single transcript per template DNA molecule using the T7 RNAP system. We hypothesized that stalling the polymerase downstream from the promoter region and subsequent cleavage of the promoter by a restriction enzyme (to prevent promoter binding by another polymerase) would allow synchronized production of a single transcript per template. The single-pass transcription was verified in two different scenarios: a short self-cleaving ribozyme and a long mRNA. The results show that a controlled single-pass transcription using T7 RNAP allows precise measurement of cotranscriptional ribozyme activity, and this approach will facilitate the study of other kinetic events.


Asunto(s)
Bacteriófago T7/enzimología , ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas , ARN Catalítico/metabolismo , ARN Mensajero/genética , Transcripción Genética , Proteínas Virales/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Conformación Proteica , ARN Catalítico/genética , Proteínas Virales/química , Proteínas Virales/genética
6.
Chembiochem ; 22(12): 2098-2101, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33798271

RESUMEN

A mechanism of nucleoside triphosphorylation would have been critical in an evolving "RNA world" to provide high-energy substrates for reactions such as RNA polymerization. However, synthetic approaches to produce ribonucleoside triphosphates (rNTPs) have suffered from conditions such as high temperatures or high pH that lead to increased RNA degradation, as well as substrate production that cannot sustain replication. Previous reports have demonstrated that cyclic trimetaphosphate (cTmp) can react with nucleosides to form rNTPs under prebiotically-relevant conditions, but their reaction rates were unknown and the influence of reaction conditions not well-characterized. Here we established a sensitive assay that allowed for the determination of second-order rate constants for all four rNTPs, ranging from 1.7×10-6 to 6.5×10-6  M-1 s-1 . The ATP reaction shows a linear dependence on pH and Mg2+ , and an enthalpy of activation of 88±4 kJ/mol. At millimolar nucleoside and cTmp concentrations, the rNTP production rate is sufficient to facilitate RNA synthesis by both T7 RNA polymerase and a polymerase ribozyme. We suggest that the optimized reaction of cTmp with nucleosides may provide a viable connection between prebiotic nucleotide synthesis and RNA replication.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Ácidos Fosforosos/metabolismo , ARN Catalítico/metabolismo , ARN/biosíntesis , Ribonucleótidos/metabolismo , Proteínas Virales/metabolismo , Estructura Molecular , Ácidos Fosforosos/química , ARN/química , Ribonucleótidos/química
7.
J Am Chem Soc ; 142(4): 1941-1951, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31887027

RESUMEN

Laboratory evolution of functional RNAs has applications in many areas of chemical and synthetic biology. In vitro selections critically depend on the presence of functional molecules, such as aptamers and ribozymes, in the starting sequence pools. For selection of novel functions the pools are typically transcribed from random-sequence DNA templates, yielding a highly diverse set of RNAs that contain a multitude of folds and biochemical activities. The phenotypic potential, the frequency of functional RNAs, is very low, requiring large complexity of starting pools, surpassing 1015 different sequences, to identify highly active isolates. Furthermore, the majority of random sequences is not structured and has a high propensity for aggregation; the in vitro selection process thus involves not just enrichment of functional RNAs, but also their purification from aggregation-prone "free-riders". We reasoned that purification of the nonaggregating, monomeric subpopulation of a random-sequence RNA pool will yield pools of folded, functional RNAs. We performed six rounds of selection for monomeric sequences and show that the enriched population is compactly folded. In vitro selections originating from various mixtures of the compact pool and a fully random pool showed that sequences from the compact pool always dominate the population once a biochemical activity is detectable. A head-to-head competition of the two pools starting from a low (5 × 1012) sequence diversity revealed that the phenotypic potential of the compact pool is about 1000-times higher than the fully random pool. A selection for folded and monomeric RNA pools thus greatly increases the frequency of functional RNAs from that seen in random-sequence pools, providing a facile experimental approach to isolation of highly active functional RNAs from low-diversity populations.


Asunto(s)
ARN/química , Aptámeros de Nucleótidos/química , Conformación de Ácido Nucleico
8.
Biochemistry ; 56(45): 6006-6014, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29045794

RESUMEN

Self-cleaving ribozymes were discovered 30 years ago and have been found throughout nature, from bacteria to animals, but little is known about their biological functions and regulation, particularly how cofactors and metabolites alter their activity. A hepatitis delta virus-like self-cleaving ribozyme maps upstream of a phosphoglucosamine mutase (glmM) open reading frame in the genome of the human gut bacterium Faecalibacterium prausnitzii. The presence of a ribozyme in the untranslated region of glmM suggests a regulation mechanism of gene expression. In the bacterial hexosamine biosynthesis pathway, the enzyme glmM catalyzes the isomerization of glucosamine 6-phosphate into glucosamine 1-phosphate. In this study, we investigated the effect of these metabolites on the co-transcriptional self-cleavage rate of the ribozyme. Our results suggest that glucosamine 6-phosphate, but not glucosamine 1-phosphate, is an allosteric ligand that increases the self-cleavage rate of drz-Fpra-1, providing the first known example of allosteric modulation of a self-cleaving ribozyme by the substrate of the adjacent gene product. Given that the ribozyme is activated by the glmM substrate, but not the product, this allosteric modulation may represent a potential feed-forward mechanism of gene expression regulation in bacteria.


Asunto(s)
Faecalibacterium prausnitzii/enzimología , Faecalibacterium prausnitzii/genética , Regulación Enzimológica de la Expresión Génica , Fosfoglucomutasa/metabolismo , ARN Catalítico/metabolismo , Regulación Alostérica , Secuencia de Bases , Faecalibacterium prausnitzii/metabolismo , Genoma Bacteriano , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Glucosa-6-Fosfato/análogos & derivados , Glucosa-6-Fosfato/metabolismo , Virus de la Hepatitis Delta/enzimología , Conformación de Ácido Nucleico , Fosfoglucomutasa/genética , ARN Catalítico/genética
9.
Elife ; 132024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319152

RESUMEN

A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element-binding protein 3 (Cpeb3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the Cpeb3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.


Stored within DNA are the instructions cells need to make proteins. In order for proteins to get made, the region of DNA that codes for the desired protein (known as the gene) must first be copied into a molecule called messenger RNA (or mRNA for short). Once transcribed, the mRNA undergoes further modifications, including removing redundant segments known as introns. It then travels to molecular machines that translate its genetic sequence into the building blocks of the protein. Following transcription, some RNAs can fold into catalytic segments known as self-cleaving ribozymes which promote the scission of their own genetic sequence. One such ribozyme resides in the intron of a gene for CPEB3, a protein which adds a poly(A) tail to various mRNAs, including some involved in learning and memory. Although this ribozyme is found in most mammals, its biological role is poorly understood. Previous studies suggested that the ribozyme cleaves itself at the same time as the mRNA for CPEB3 is transcribed. This led Chen et al. to hypothesize that the rate at which these two events occur impacts the amount of CPEB3 produced, resulting in changes in memory and learning. If the ribozyme cleaves quickly, the intron is disrupted and may not be properly removed, leading to less CPEB3 being made. However, if the ribozyme is inhibited, the intron remains intact and is efficiently excised, resulting in higher levels of CPEB3 protein. To test how the ribozyme impacts CPEB3 production, Chen et al. inhibited the enzyme from cutting itself with antisense oligonucleotides (ASOs). The ASOs were applied to in vitro transcription systems, neurons cultured in the laboratory and the brains of living mice in an area called the hippocampus. The in vitro and cell culture experiments led to higher levels of CPEB3 protein and the addition of more poly(A) tails to mRNAs involved in neuron communication. Injection of the ASOs into the brains of mice had the same effect, and also improved their memory and learning. The findings of Chen et al. show a new mechanism for controlling protein production, and suggest that ASOs could be used to increase the levels of CPEB3 and modulate neuronal activity. This is the first time a biological role for a self-cleaving ribozyme in mammals has been identified, and the approach used could be applied to investigate the function of two other self-cleaving ribozymes located in introns in humans.


Asunto(s)
ARN Catalítico , Ratones , Humanos , Animales , ARN Catalítico/genética , ARN Catalítico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Poliadenilación , Memoria a Largo Plazo , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo
10.
Nat Commun ; 14(1): 2969, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221204

RESUMEN

Beetroot is a homodimeric in vitro selected RNA that binds and activates DFAME, a conditional fluorophore derived from GFP. It is 70% sequence-identical to the previously characterized homodimeric aptamer Corn, which binds one molecule of its cognate fluorophore DFHO at its interprotomer interface. We have now determined the Beetroot-DFAME co-crystal structure at 1.95 Å resolution, discovering that this RNA homodimer binds two molecules of the fluorophore, at sites separated by ~30 Å. In addition to this overall architectural difference, the local structures of the non-canonical, complex quadruplex cores of Beetroot and Corn are distinctly different, underscoring how subtle RNA sequence differences can give rise to unexpected structural divergence. Through structure-guided engineering, we generated a variant that has a 12-fold fluorescence activation selectivity switch toward DFHO. Beetroot and this variant form heterodimers and constitute the starting point for engineered tags whose through-space inter-fluorophore interaction could be used to monitor RNA dimerization.


Asunto(s)
Ingeniería , Colorantes Fluorescentes , Dimerización , Fluorescencia , Ionóforos , Oligonucleótidos , ARN , Verduras , Zea mays
11.
bioRxiv ; 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37333407

RESUMEN

A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element binding protein 3 (CPEB3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the CPEB3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.

12.
Methods Mol Biol ; 2167: 13-24, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32712912

RESUMEN

Self-cleaving ribozymes are RNA molecules that catalyze a site-specific self-scission reaction. Analysis of self-cleavage is a crucial aspect of the biochemical study and understanding of these molecules. Here we describe a co-transcriptional assay that allows the analysis of self-cleaving ribozymes in different reaction conditions and in the presence of desired ligands and/or cofactors. Utilizing a standard T7 RNA polymerase in vitro transcription system under limiting Mg2+ concentration, followed by a 25-fold dilution of the reaction in desired conditions of self-cleavage (buffer, ions, ligands, pH, temperature, etc.) to halt the synthesis of new RNA molecules, allows the study of self-scission of these molecules without the need for purification or additional preparation steps, such as refolding procedures. Furthermore, because the transcripts are not denatured, this assay likely yields RNAs in conformations relevant to co-transcriptionally folded species in vivo.


Asunto(s)
Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Pruebas de Enzimas/métodos , Faecalibacterium prausnitzii/metabolismo , Magnesio/metabolismo , ARN Catalítico/metabolismo , Transcripción Genética , Proteínas Virales/metabolismo , Proteínas Bacterianas/genética , Catálisis , Electroforesis en Gel de Poliacrilamida , Faecalibacterium prausnitzii/enzimología , Faecalibacterium prausnitzii/genética , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Iones/química , Cinética , Ligandos , Magnesio/química , Fosfoglucomutasa/metabolismo , ARN Catalítico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA