Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biomacromolecules ; 25(7): 3893-3908, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38815979

RESUMEN

Lubricin, an intrinsically disordered glycoprotein, plays a pivotal role in facilitating smooth movement and ensuring the enduring functionality of synovial joints. The central domain of this protein serves as a source of this excellent lubrication and is characterized by its highly glycosylated, negatively charged, and disordered structure. However, the influence of O-glycans on the viscosity of lubricin remains unclear. In this study, we employ molecular dynamics simulations in the absence and presence of shear, along with continuum simulations, to elucidate the intricate interplay between O-glycans and lubricin and the impact of O-glycans on lubricin's conformational properties and viscosity. We found the presence of O-glycans to induce a more extended conformation in fragments of the disordered region of lubricin. These O-glycans contribute to a reduction in solution viscosity but at the same time weaken shear thinning at high shear rates, compared to nonglycosylated systems with the same density. This effect is attributed to the steric and electrostatic repulsion between the fragments, which prevents their conglomeration and structuring. Our computational study yields a mechanistic mechanism underlying previous experimental observations of lubricin and paves the way to a more rational understanding of its function in the synovial fluid.


Asunto(s)
Glicoproteínas , Simulación de Dinámica Molecular , Polisacáridos , Viscosidad , Glicoproteínas/química , Polisacáridos/química , Glicosilación , Humanos , Líquido Sinovial/química , Líquido Sinovial/metabolismo , Resistencia al Corte
2.
Phys Rev Lett ; 131(8): 084001, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37683151

RESUMEN

Molecular dynamics (MD) simulations have been widely used to study flow at molecular scales. Most of this work is devoted to study the departure from continuum fluid mechanics as the confining dimension decreases. Here, we present MD results under conditions where hydrodynamic descriptions typically apply, but focus on the influence of in-plane wavelengths. Probing the long wavelength limit in thermodynamic equilibrium, we observed anomalous relaxation of the density and longitudinal momentum fluctuations. The limiting behavior can be described by an effective continuum theory that describes a transition to overdamped sound relaxation for compressible fluids.

3.
J Chem Phys ; 159(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37668251

RESUMEN

We analyze the shear response of grafted polymer chains in shear flow via coarse-grained molecular dynamics simulations with an explicit solvent. We find that the solvent flow penetrates into almost the whole brush for "mushroom"-type brushes but only a few bond distances for dense brushes. In all cases, the external stress on the wall equals the entropic stress associated with the distorted polymer conformations. We find that the external stress increases linearly with shear rate at low rates and sublinearly at high rates. The transition from linear to sublinear scaling occurs where chains react to flow by reorienting. Sublinear scaling with shear rate disappears if the shear rate is nondimensionalized with the effective relaxation time of chain subsegments located in the outer part of the brush that experiences flow.

4.
J Chem Phys ; 158(24)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37377159

RESUMEN

We use molecular dynamics simulations to study the frictional response of monolayers of the anionic surfactant sodium dodecyl sulfate and hemicylindrical aggregates physisorbed on gold. Our simulations of a sliding spherical asperity reveal the following two friction regimes: at low loads, the films show Amonton's friction with a friction force that rises linearly with normal load, and at high loads, the friction force is independent of the load as long as no direct solid-solid contact occurs. The transition between these two regimes happens when a single molecular layer is confined in the gap between the sliding bodies. The friction force at high loads on a monolayer rises monotonically with film density and drops slightly with the transition to hemicylindrical aggregates. This monotonous increase of friction force is compatible with a traditional plowing model of sliding friction. At low loads, the friction coefficient reaches a minimum at the intermediate surface concentrations. We attribute this behavior to a competition between adhesive forces, repulsion of the compressed film, and the onset of plowing.

5.
MRS Bull ; 47(12): 1205-1210, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36846501

RESUMEN

Abstract: Materials science is about understanding the relationship between a material's structure and its properties-in the sphere of mechanical behavior, this includes elastic modulus, yield strength, and other bulk properties. We show in this issue that, analogously, a material's surface structure governs its surface properties-such as adhesion, friction, and surface stiffness. For bulk materials, microstructure is a critical component of structure; for surfaces, the structure is governed largely by surface topography. The articles in this issue cover the latest understanding of these structure-property connections for surfaces. This includes both the theoretical basis for how properties depend on topography, as well as the latest understanding of how surface topography emerges, how to measure and understand topography-dependent properties, and how to engineer surfaces to improve performance. The present article frames the importance of surface topography and its effect on properties; it also outlines some of the critical knowledge gaps that impede progress toward optimally performing surfaces.

6.
Soft Matter ; 18(31): 5843-5849, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35900052

RESUMEN

Friction is one of the leading causes of energy loss in moving parts, and understanding how roughness affects friction is of utmost importance. From creating surfaces with high friction to prevent slip and movement, to creating surfaces with low friction to minimize energy loss, roughness plays a key role. By measuring shear stresses of crosslinked elastomers on three rough surfaces of similar surface chemistry across nearly six decades of sliding velocity, we demonstrate the dominant role of adhesive frictional dissipation. Furthermore, while it was previously known that roughness-induced oscillations affected the viscoelastic dissipation, we show that these oscillations also control the molecular detachment process and the resulting adhesive dissipation. This contrasts with typical models of friction, where only the amount of contact area and the strength of interfacial bonding govern the adhesive dissipation. Finally, we show that all the data can be collapsed onto a universal curve when the shear stress is scaled by the square root of elastic modulus and the velocity is scaled by a critical velocity at which the system exhibits macroscopic buckling instabilities. Taken together, these results suggest a design principle broadly applicable to frictional systems ranging from tires to soft robotics.

7.
Proc Natl Acad Sci U S A ; 116(51): 25484-25490, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31772024

RESUMEN

A mechanistic understanding of adhesion in soft materials is critical in the fields of transportation (tires, gaskets, and seals), biomaterials, microcontact printing, and soft robotics. Measurements have long demonstrated that the apparent work of adhesion coming into contact is consistently lower than the intrinsic work of adhesion for the materials, and that there is adhesion hysteresis during separation, commonly explained by viscoelastic dissipation. Still lacking is a quantitative experimentally validated link between adhesion and measured topography. Here, we used in situ measurements of contact size to investigate the adhesion behavior of soft elastic polydimethylsiloxane hemispheres (modulus ranging from 0.7 to 10 MPa) on 4 different polycrystalline diamond substrates with topography characterized across 8 orders of magnitude, including down to the angstrom scale. The results show that the reduction in apparent work of adhesion is equal to the energy required to achieve conformal contact. Further, the energy loss during contact and removal is equal to the product of the intrinsic work of adhesion and the true contact area. These findings provide a simple mechanism to quantitatively link the widely observed adhesion hysteresis to roughness rather than viscoelastic dissipation.

8.
Phys Rev Lett ; 127(12): 126101, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34597064

RESUMEN

We study mechanically induced phase transitions at tribological interfaces between silicon crystals using reactive molecular dynamics. The simulations reveal that the interplay between shear-driven amorphization and recrystallization results in an amorphous shear interface with constant thickness. Different shear elastic responses of the two anisotropic crystals can lead to the migration of the amorphous interface normal to the sliding plane, causing the crystal with lowest elastic energy density to grow at the expense of the other one. This triboepitaxial growth can be achieved by crystal misorientation or exploiting elastic finite-size effects, enabling the direct deposition of homoepitaxial silicon nanofilms by a crystalline tip rubbing against a substrate.

9.
Proc Natl Acad Sci U S A ; 111(9): 3298-303, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24550489

RESUMEN

At the molecular scale, there are strong attractive interactions between surfaces, yet few macroscopic surfaces are sticky. Extensive simulations of contact by adhesive surfaces with roughness on nanometer to micrometer scales are used to determine how roughness reduces the area where atoms contact and thus weakens adhesion. The material properties, adhesive strength, and roughness parameters are varied by orders of magnitude. In all cases, the area of atomic contact is initially proportional to the load. The prefactor rises linearly with adhesive strength for weak attractions. Above a threshold adhesive strength, the prefactor changes sign, the surfaces become sticky, and a finite force is required to separate them. A parameter-free analytic theory is presented that describes changes in these numerical results over up to five orders of magnitude in load. It relates the threshold adhesive strength to roughness and material properties, explaining why most macroscopic surfaces do not stick. The numerical results are qualitatively and quantitatively inconsistent with classical theories based on the Greenwood-Williamson approach that neglect the range of adhesion and do not include asperity interactions.


Asunto(s)
Modelos Teóricos , Propiedades de Superficie , Adhesividad , Elasticidad , Física
10.
Phys Rev Lett ; 115(13): 135501, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26451566

RESUMEN

We present density functional theory based atomistic calculations predicting that slow fracturing of silicon is possible at any chosen crack propagation speed under suitable temperature and load conditions. We also present experiments demonstrating fracture propagation on the Si(110) cleavage plane in the ~100 m/s speed range, consistent with our predictions. These results suggest that many other brittle crystals could be broken arbitrarily slowly in controlled experiments.

11.
Nano Lett ; 14(12): 7145-52, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25375666

RESUMEN

We study nanoindentation and scratching of graphene-covered Pt(111) surfaces in computer simulations and experiments. We find elastic response at low load, plastic deformation of Pt below the graphene at intermediate load, and eventual rupture of the graphene at high load. Friction remains low in the first two regimes, but jumps to values also found for bare Pt(111) surfaces upon graphene rupture. While graphene substantially enhances the load carrying capacity of the Pt substrate, the substrate's intrinsic hardness and friction are recovered upon graphene rupture.

12.
Science ; 383(6679): 150-151, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38207043

RESUMEN

The frictional properties of material interfaces can be rationally designed.

13.
Sci Adv ; 10(10): eadl1277, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446897

RESUMEN

Soft solids are sticky. They attract each other and spontaneously form a large area of contact. Their force of attraction is higher when separating than when forming contact, a phenomenon known as adhesion hysteresis. The common explanation for this hysteresis is viscoelastic energy dissipation or contact aging. Here, we use experiments and simulations to show that it emerges even for perfectly elastic solids. Pinning by surface roughness triggers the stick-slip motion of the contact line, dissipating energy. We derive a simple and general parameter-free equation that quantitatively describes contact formation in the presence of roughness. Our results highlight the crucial role of surface roughness and present a fundamental shift in our understanding of soft adhesion.

14.
PLoS One ; 19(6): e0306100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38917182

RESUMEN

Making data FAIR-findable, accessible, interoperable, reproducible-has become the recurring theme behind many research data management efforts. dtool is a lightweight data management tool that packages metadata with immutable data to promote accessibility, interoperability, and reproducibility. Each dataset is self-contained and does not require metadata to be stored in a centralised system. This decentralised approach means that finding datasets can be difficult. dtool's lookup server, short dserver, as defined by a REST API, makes dtool datasets findable, hence rendering the dtool ecosystem fit for a FAIR data management world. Its simplicity, modularity, accessibility and standardisation via API distinguish dtool and dserver from other solutions and enable it to serve as a common denominator for cross-disciplinary research data management. The dtool ecosystem bridges the gap between standardisation-free data management by individuals and FAIR platform solutions with rigid metadata requirements.


Asunto(s)
Programas Informáticos , Manejo de Datos/métodos , Metadatos , Ecosistema , Reproducibilidad de los Resultados , Internet
15.
J Chem Phys ; 138(10): 104108, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23514466

RESUMEN

We present a linear-scaling method based on self-consistent charge non-orthogonal tight-binding. Linear scaling is achieved using a many-body expansion, which is adjusted dynamically to the instantaneous molecular configuration of a liquid. The method is capable of simulating liquids over large length and time scales, and also handles reactions correctly. Benchmarking on typical carbonate electrolytes used in Li-ion batteries displays excellent agreement with results from full tight-binding calculations. The decomposition slightly breaks the Hellmann-Feynman theorem, which is demonstrated by application to water. However, an additional correction also enables dynamical simulation in this case.

16.
Sci Adv ; 9(48): eadi2649, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38039366

RESUMEN

The Reynolds lubrication equation (RLE) is widely used to design sliding contacts in mechanical machinery. While providing an excellent description of hydrodynamic lubrication, friction in boundary lubrication regions is usually considered by empirical laws, because continuum theories are expected to fail for lubricant film heights h0 ≪ 10 nm, especially in highly loaded tribosystems with normal pressures pn ≫ 0.1 GPa. Here, the performance of RLEs is validated by molecular dynamics simulations of pressurized (with pn = 0.2 to 1 GPa) hexadecane in a gold converging-diverging channel with minimum gap heights h0 = 1.4 to 9.7 nm. For pn ≤ 0.4 GPa and h0 ≥ 5 nm, agreement with the RLE requires accurate constitutive laws for pressure-dependent density and viscosity. An additional nonlinear wall slip law relating wall slip velocities to local shear stresses extends the RLE's validity to even the most severe loading condition pn = 1 GPa and h0 = 1.4 nm. Our results demonstrate an innovative route for continuum modeling of highly loaded tribological contacts under boundary lubrication.

17.
Nat Mater ; 10(1): 34-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21113152

RESUMEN

Diamond is the hardest material on Earth. Nevertheless, polishing diamond is possible with a process that has remained unaltered for centuries and is still used for jewellery and coatings: the diamond is pressed against a rotating disc with embedded diamond grit. When polishing polycrystalline diamond, surface topographies become non-uniform because wear rates depend on crystal orientations. This anisotropy is not fully understood and impedes diamond's widespread use in applications that require planar polycrystalline films, ranging from cutting tools to confinement fusion. Here, we use molecular dynamics to show that polished diamond undergoes an sp(3)-sp(2) order-disorder transition resulting in an amorphous adlayer with a growth rate that strongly depends on surface orientation and sliding direction, in excellent correlation with experimental wear rates. This anisotropy originates in mechanically steered dissociation of individual crystal bonds. Similarly to other planarization processes, the diamond surface is chemically activated by mechanical means. Final removal of the amorphous interlayer proceeds either mechanically or through etching by ambient oxygen.

18.
Front Plant Sci ; 13: 950860, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237506

RESUMEN

Species with various reproductive modes accompanied by different mechanical properties of their (lateral) branch-branch junctions have evolved in the cactus subfamily Opuntioideae. Older branches of Opuntia ficus-indica with fracture-resistant junctions often bear flowers and fruits for sexual reproduction, whereas younger branches break off easily and provide offshoots for vegetative propagation. Cylindropuntia bigelovii plants are known for their vegetative reproduction via easily detachable branches that can establish themselves as offshoots. We characterized the elastic and fracture behaviors of these lateral junctions by tensile testing and analyzed local strains during loading. Additionally, we carried out finite element analyses to quantify the influence of five relevant tissue layers on joint elastic behavior. Our fracture analysis revealed various fracture modes: (i) most young samples of Opuntia ficus-indica failed directly at the junction and had smooth fracture surfaces, and relative fracture strain was on median 4% of the total strain; (ii) most older samples of Opuntia ficus-indica failed at the adjacent branch and exhibited rough fracture surfaces, and relative fracture strain was on median 47%; (iii) most samples of Cylindropuntia bigelovii abscised directly at the junction and exhibited cup and cone surfaces, and relative fracture strain was on median 28%. Various geometric and mechanical properties such as junction area, fracture energy, and tensile strength were analyzed with respect to significant differences between species and age of sample. Interestingly, the abscission of lateral branches naturally triggered by wind, passing animals, or vibration showed the following differences in maximum force: 153 N (older Opuntia ficus-indica), 51 N (young Opuntia ficus-indica), and 14 N (Cylindropuntia bigelovii).

19.
Phys Rev E ; 103(5-1): 053305, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34134198

RESUMEN

Resolving atomic scale details while capturing long-range elastic deformation is the principal difficulty when solving contact mechanics problems with computer simulations. Fully atomistic simulations must consider large blocks of atoms to support long-wavelength deformation modes, meaning that most atoms are far removed from the region of interest. Building on earlier methods that used elastic surface Green's functions to compute static substrate deformation, we present a numerically efficient dynamic Green's function technique to treat realistic, time-evolving, elastic solids. Our method solves substrate dynamics in reciprocal space and utilizes precomputed Green's functions that exactly reproduce elastic interactions without retaining the atomic degrees of freedom in the bulk. We invoke physical insights to determine the necessary number of explicit substrate layers required to capture the attenuation of subsurface waves as a function of surface wave vector. We observe that truncating substrate dynamics at depths that fall as a power of wave vector allows us to accurately model wave propagation without implementing arbitrary damping. The framework we have developed substantially accelerates molecular dynamics simulations of large elastic substrates. We apply the method to single asperity contact, impact, and sliding friction problems and present our preliminary findings.

20.
Sci Adv ; 6(7): eaax0847, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32110722

RESUMEN

Most natural and man-made surfaces appear to be rough on many length scales. There is presently no unifying theory of the origin of roughness or the self-affine nature of surface topography. One likely contributor to the formation of roughness is deformation, which underlies many processes that shape surfaces such as machining, fracture, and wear. Using molecular dynamics, we simulate the biaxial compression of single-crystal Au, the high-entropy alloy Ni36.67Co30Fe16.67Ti16.67, and amorphous Cu50Zr50 and show that even surfaces of homogeneous materials develop a self-affine structure. By characterizing subsurface deformation, we connect the self-affinity of the surface to the spatial correlation of deformation events occurring within the bulk and present scaling relations for the evolution of roughness with strain. These results open routes toward interpreting and engineering roughness profiles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA