Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Methods ; 226: 102-119, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604415

RESUMEN

Membrane proteins play pivotal roles in a wide array of cellular processes and constitute approximately a quarter of the protein-coding genes across all organisms. Despite their ubiquity and biological significance, our understanding of these proteins remains notably less comprehensive compared to their soluble counterparts. This disparity in knowledge can be attributed, in part, to the inherent challenges associated with employing specialized techniques for the investigation of membrane protein insertion and topology. This review will center on a discussion of molecular biology methodologies and computational prediction tools designed to elucidate the insertion and topology of helical membrane proteins.


Asunto(s)
Biología Computacional , Proteínas de la Membrana , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Biología Computacional/métodos , Humanos , Modelos Moleculares
2.
Trends Biochem Sci ; 45(2): 123-136, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31753702

RESUMEN

The endoplasmic reticulum (ER) is responsible for the synthesis of one-third of the cellular proteome and is constantly challenged by physiological and environmental situations that can perturb its homeostasis and lead to the accumulation of misfolded secretory proteins, a condition referred to as ER stress. In response, the ER evokes a set of intracellular signaling processes, collectively known as the unfolded protein response (UPR), which are designed to restore biosynthetic capacity of the ER. As single-cell organisms evolved into multicellular life, the UPR complexity has increased to suit their growth and development. In this review, we discuss recent advances in the understanding of the UPR, emphasizing conserved UPR elements between plants and metazoans and highlighting unique plant-specific features.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estrés del Retículo Endoplásmico , Arabidopsis/fisiología , Homeostasis , Transducción de Señal , Transcripción Genética , Respuesta de Proteína Desplegada
3.
Plant Physiol ; 184(3): 1333-1347, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32900981

RESUMEN

p24 proteins are a family of type-I membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi apparatus via Coat Protein I (COPI)- and COPII-coated vesicles. These proteins have been proposed to function as cargo receptors, but the identity of putative cargos in plants is still elusive. We previously generated an Arabidopsis (Arabidopsis thaliana) quadruple loss-of-function mutant affecting p24 genes from the δ-1 subclass of the p24 delta subfamily (p24δ3δ4δ5δ6 mutant). This mutant also had reduced protein levels of other p24 family proteins and was found to be sensitive to salt stress. Here, we used this mutant to test the possible involvement of p24 proteins in the transport to the plasma membrane of glycosylphosphatidylinositol (GPI)-anchored proteins. We found that GPI-anchored proteins mostly localized to the ER in p24δ3δ4δ5δ6 mutant cells, in contrast to plasma membrane proteins with other types of membrane attachment. The plasma membrane localization of GPI-anchored proteins was restored in the p24δ3δ4δ5δ6 mutant upon transient expression of a single member of the p24 δ-1 subclass, RFP-p24δ5, which was dependent on the coiled-coil domain in p24δ5. The coiled-coil domain was also important for a direct interaction between p24δ5 and the GPI-anchored protein arabinogalactan protein4 (AGP4). These results suggest that Arabidopsis p24 proteins are involved in ER export and transport to the plasma membrane of GPI-anchored proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Variación Genética , Genotipo , Glicosilfosfatidilinositoles/genética , Proteínas de la Membrana/genética , Mutación , Transporte de Proteínas/genética
4.
J Cell Sci ; 131(2)2018 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-28871045

RESUMEN

The p24 family of proteins (also known as the TMED family) are key regulators of protein trafficking along the secretory pathway, but very little is known about their functions in plants. A quadruple loss-of-function mutant affecting the p24 genes from the δ-1 subclass of the p24δ subfamily (p24δ3δ4δ5δ6) showed alterations in the Golgi, suggesting that these p24 proteins play a role in the organization of the compartments of the early secretory pathway in Arabidopsis Loss of p24δ-1 proteins also induced the accumulation of the K/HDEL receptor ERD2a (ER lumen protein-retaining receptor A) at the Golgi and increased secretion of BiP family proteins, ER chaperones containing an HDEL signal, probably due to an inhibition of COPI-dependent Golgi-to-ER transport of ERD2a and thus retrieval of K/HDEL ligands. Although the p24δ3δ4δ5δ6 mutant showed enhanced sensitivity to salt stress, it did not show obvious phenotypic alterations under standard growth conditions. Interestingly, this mutant showed a constitutive activation of the unfolded protein response (UPR) and the transcriptional upregulation of the COPII subunit gene SEC31A, which may help the plant to cope with the transport defects seen in the absence of p24 proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Proteínas de la Membrana/metabolismo , Respuesta de Proteína Desplegada , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/genética , Biomarcadores/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Transporte de Proteínas , Vías Secretoras/genética , Respuesta de Proteína Desplegada/genética
5.
J Exp Bot ; 68(3): 391-401, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28025315

RESUMEN

COP (coat protein) I-coated vesicles mediate intra-Golgi transport and retrograde transport from the Golgi to the endoplasmic reticulum. These vesicles form through the action of the small GTPase ADP-ribosylation factor 1 (ARF1) and the COPI heptameric protein complex (coatomer), which consists of seven subunits (α-, ß-, ß'-, γ-, δ-, ε- and ζ-COP). In contrast to mammals and yeast, several isoforms for coatomer subunits, with the exception of γ and δ, have been identified in Arabidopsis. To understand the role of COPI proteins in plant biology, we have identified and characterized a loss-of-function mutant of α2-COP, an Arabidopsis α-COP isoform. The α2-cop mutant displayed defects in plant growth, including small rosettes, stems and roots and mislocalization of p24δ5, a protein of the p24 family containing a C-terminal dilysine motif involved in COPI binding. The α2-cop mutant also exhibited abnormal morphology of the Golgi apparatus. Global expression analysis of the α2-cop mutant revealed altered expression of plant cell wall-associated genes. In addition, a strong upregulation of SEC31A, which encodes a subunit of the COPII coat, was observed in the α2-cop mutant; this also occurs in a mutant of a gene upstream of COPI assembly, GNL1, which encodes an ARF-guanine nucleotide exchange factor (GEF). These findings suggest that loss of α2-COP affects the expression of secretory pathway genes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteína Coatómero/genética , Proteína Coatómero/metabolismo , Ubiquitina-Proteína Ligasas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/genética , Retículo Endoplásmico/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
6.
Plant J ; 80(6): 1014-30, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25312353

RESUMEN

The p24 proteins belong to a family of type I membrane proteins which cycle between the endoplasmic reticulum (ER) and Golgi via coat protein I (COPI) and COPII vesicles. Current nomenclature classifies them into four subfamilies, although plant p24 proteins belong to either the p24ß or the p24δ subfamilies. Here, we show that Arabidopsis p24δ5/δ9 and HDEL ligands shift the steady-state distribution of the K/HDEL receptor ERD2 from the Golgi to the ER. We also show that p24δ5/δ9 interact directly with ERD2. This interaction requires the Golgi dynamics (GOLD) domain in p24δ5 and is much higher at acidic than at neutral pH, consistent with both proteins interacting at the cis-Golgi. In addition, p24δ5 also inhibits the secretion of HDEL ligands, but not constitutive secretion, showing a role for p24δ5 in retrograde Golgi-to-ER transport. Both p24δ5 and ERD2 interact with ADP-ribosylation factor 1 (ARF1) and COPI subunits, mostly at acidic pH, consistent with COPI vesicles being involved in retrograde transport of both proteins. In contrast, both proteins interact with the COPII subunit Sec23, mostly at neutral pH, consistent with this interaction taking place at the ER for anterograde transport to the Golgi apparatus.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Péptidos/metabolismo , Factores de Transcripción/metabolismo , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteína Coat de Complejo I/genética , Proteína Coat de Complejo I/metabolismo , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/genética , Transporte de Proteínas , Receptores de Péptidos/genética , Factores de Transcripción/genética
7.
Nat Commun ; 15(1): 5804, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987268

RESUMEN

Environmental and physiological situations can challenge the balance between protein synthesis and folding capacity of the endoplasmic reticulum (ER) and cause ER stress, a potentially lethal condition. The unfolded protein response (UPR) restores ER homeostasis or actuates programmed cell death (PCD) when ER stress is unresolved. The cell fate determination mechanisms of the UPR are not well understood, especially in plants. Here, we integrate genetics and ER stress profiling with natural variation and quantitative trait locus analysis of 350 natural accessions of the model species Arabidopsis thaliana. Our analyses implicate a single nucleotide polymorphism to the loss of function of the general PCD regulator BON-ASSOCIATED PROTEIN2 (BAP2) in UPR outcomes. We establish that ER stress-induced BAP2 expression is antagonistically regulated by the UPR master regulator, inositol-requiring enzyme 1 (IRE1), and that BAP2 controls adaptive UPR amplitude in ER stress and ignites pro-death mechanisms in conditions of UPR insufficiency.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica de las Plantas , Respuesta de Proteína Desplegada , Apoptosis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Polimorfismo de Nucleótido Simple , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Sitios de Carácter Cuantitativo , Respuesta de Proteína Desplegada/genética
8.
Mol Plant ; 10(8): 1095-1106, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28735024

RESUMEN

The K/HDEL receptor ERD2 mediates the transport of soluble endoplasmic reticulum (ER)-resident proteins containing a C-terminal K/HDEL signal from the Golgi apparatus back to the ER via COPI (COat Protein I)-coated vesicles. Sorting of ERD2 within COPI vesicles is facilitated by p24 proteins. In Arabidopsis, p24δ5 has been shown to interact directly with ERD2 via its luminal GOLD (GOLgi Dynamics) domain and with COPI proteins via its cytoplasmic C-terminal tail at the acidic pH of the Golgi apparatus. Several members of the p24 family in mammals and yeast have been shown to be glycosylated, but whether Arabidopsis p24 proteins are glycosylated and the role of the sugar moiety in p24 function remain unclear. Here, we show that Arabidopsis p24δ5 protein is N-glycosylated in its GOLD domain. Furthermore, we demonstrate that this post-translational modification is important for its coupled transport with p24ß2 at the ER-Golgi interface, for its interaction with the K/HDEL receptor ERD2, and for retrograde transport of ERD2 and K/HDEL ligands from the Golgi apparatus back to the ER.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Glicosilación
9.
Protoplasma ; 253(4): 967-85, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26224213

RESUMEN

p24 family proteins have been known for a long time, but their functions have remained elusive. However, they are emerging as essential regulators of protein trafficking along the secretory pathway, influencing the composition, structure, and function of different organelles in the pathway, especially the ER and the Golgi apparatus. In addition, they appear to modulate the transport of specific cargos, including GPI-anchored proteins, G-protein-coupled receptors, or K/HDEL ligands. As a consequence, they have been shown to play specific roles in signaling, development, insulin secretion, and the pathogenesis of Alzheimer's disease. The search of new putative ligands may open the way to discover new functions for this fascinating family of proteins.


Asunto(s)
Proteínas de Transporte de Membrana/fisiología , Secuencia de Aminoácidos , Animales , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Secuencia Conservada , Evolución Molecular , Humanos , Proteínas de Transporte de Membrana/química , Especificidad de Órganos , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA