Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(30): e2318982121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012828

RESUMEN

The mutualistic arbuscular mycorrhizal (AM) symbiosis arose in land plants more than 450 million years ago and is still widely found in all major land plant lineages. Despite its broad taxonomic distribution, little is known about the molecular components underpinning symbiosis outside of flowering plants. The ARBUSCULAR RECEPTOR-LIKE KINASE (ARK) is required for sustaining AM symbiosis in distantly related angiosperms. Here, we demonstrate that ARK has an equivalent role in symbiosis maintenance in the bryophyte Marchantia paleacea and is part of a broad AM genetic program conserved among land plants. In addition, our comparative transcriptome analysis identified evolutionarily conserved expression patterns for several genes in the core symbiotic program required for presymbiotic signaling, intracellular colonization, and nutrient exchange. This study provides insights into the molecular pathways that consistently associate with AM symbiosis across land plants and identifies an ancestral role for ARK in governing symbiotic balance.


Asunto(s)
Embryophyta , Regulación de la Expresión Génica de las Plantas , Micorrizas , Proteínas de Plantas , Simbiosis , Simbiosis/genética , Micorrizas/fisiología , Micorrizas/genética , Embryophyta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Marchantia/genética , Marchantia/microbiología , Filogenia
2.
Plant J ; 119(3): 1289-1298, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38818938

RESUMEN

The apocarotenoid strigolactones (SLs) facilitate pre-symbiotic communication between arbuscular mycorrhizal (AM) fungi and plants. Related blumenol-C-glucosides (blumenols), have also been associated with symbiosis, but the cues that are involved in the regulation of blumenol accumulation during AM symbiosis remain unclear. In rice, our analyses demonstrated a strict correlation between foliar blumenol abundance and intraradical fungal colonisation. More specifically, rice mutants affected at distinct stages of the interaction revealed that fungal cortex invasion was required for foliar blumenol accumulation. Plant phosphate status and D14L hormone signalling had no effect, contrasting their known role in induction of SLs. This a proportion of the SL biosynthetic enzymes, D27 and D17, are equally required for blumenol production. These results importantly clarify that, while there is a partially shared biosynthetic pathway between SL and blumenols, the dedicated induction of the related apocarotenoids occurs in response to cues acting at distinct stages during the root colonisation process. However, we reveal that neither SLs nor blumenols are essential for fungal invasion of rice roots.


Asunto(s)
Lactonas , Micorrizas , Oryza , Simbiosis , Micorrizas/fisiología , Oryza/microbiología , Oryza/metabolismo , Oryza/genética , Oryza/fisiología , Lactonas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Glucósidos/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
J Microsc ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747391

RESUMEN

Arbuscular mycorrhizal (AM) symbiosis, the nutritional partnership between AM fungi and most plant species, is globally ubiquitous and of great ecological and agricultural importance. Studying the processes of AM symbiosis is confounded by its highly spatiotemporally dynamic nature. While microscopy methods exist to probe the spatial side of this plant-fungal interaction, the temporal side remains more challenging, as reliable deep-tissue time-lapse imaging requires both symbiotic partners to remain undisturbed over prolonged time periods. Here, we introduce the AMSlide: a noninvasive, high-resolution, live-imaging system optimised for AM symbiosis research. We demonstrate the AMSlide's applications in confocal microscopy of mycorrhizal roots, from whole colonisation zones to subcellular structures, over timeframes from minutes to weeks. The AMSlide's versatility for different microscope set-ups, imaging techniques, and plant and fungal species is also outlined. It is hoped that the AMSlide will be applied in future research to fill in the temporal blanks in our understanding of AM symbiosis, as well as broader root and rhizosphere processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA