Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
BMC Cancer ; 14: 944, 2014 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-25495526

RESUMEN

BACKGROUND: MYC family members are among the most frequently deregulated oncogenes in human cancers, yet direct therapeutic targeting of MYC in cancer has been challenging thus far. Synthetic lethality provides an opportunity for therapeutic intervention of MYC-driven cancers. METHODS: A pooled kinase shRNA library screen was performed and next-generation deep sequencing efforts identified that PRKDC was synthetically lethal in cells overexpressing MYC. Genes and proteins of interest were knocked down or inhibited using RNAi technology and small molecule inhibitors, respectively. Quantitative RT-PCR using TaqMan probes examined mRNA expression levels and cell viability was assessed using CellTiter-Glo (Promega). Western blotting was performed to monitor different protein levels in the presence or absence of RNAi or compound treatment. Statistical significance of differences among data sets were determined using unpaired t test (Mann-Whitney test) or ANOVA. RESULTS: Inhibition of PRKDC using RNAi (RNA interference) or small molecular inhibitors preferentially killed MYC-overexpressing human lung fibroblasts. Moreover, inducible PRKDC knockdown decreased cell viability selectively in high MYC-expressing human small cell lung cancer cell lines. At the molecular level, we found that inhibition of PRKDC downregulated MYC mRNA and protein expression in multiple cancer cell lines. In addition, we confirmed that overexpression of MYC family proteins induced DNA double-strand breaks; our results also revealed that PRKDC inhibition in these cells led to an increase in DNA damage levels. CONCLUSIONS: Our data suggest that the synthetic lethality between PRKDC and MYC may in part be due to PRKDC dependent modulation of MYC expression, as well as MYC-induced DNA damage where PRKDC plays a key role in DNA damage repair.


Asunto(s)
Proteína Quinasa Activada por ADN/genética , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogénicas c-myc/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Línea Celular , Línea Celular Transformada , Proliferación Celular , Supervivencia Celular/genética , Análisis por Conglomerados , Roturas del ADN de Doble Cadena , Proteína Quinasa Activada por ADN/metabolismo , Fibroblastos/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo
2.
J Biol Chem ; 286(45): 38969-79, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21930703

RESUMEN

The prototypical DOCK protein, DOCK180, is an evolutionarily conserved Rac regulator and is indispensable during processes such as cell migration and myoblast fusion. The biological activity of DOCK180 is tightly linked to its binding partner ELMO. We previously reported that autoinhibited ELMO proteins regulate signaling from this pathway. One mechanism to activate the ELMO-DOCK180 complex appears to be the recruitment of this complex to the membrane via the Ras-binding domain (RBD) of ELMO. In the present study, we aimed to identify novel ELMO-interacting proteins to further define the molecular events capable of controlling ELMO recruitment to the membrane. To do so, we performed two independent interaction screens: one specifically interrogated an active GTPase library while the other probed a brain cDNA library. Both methods converged on Arl4A, an Arf-related GTPase, as a specific ELMO interactor. Biochemically, Arl4A is constitutively GTP-loaded, and our binding assays confirm that both wild-type and constitutively active forms of the GTPase associate with ELMO. Mechanistically, we report that Arl4A binds the ELMO RBD and acts as a membrane localization signal for ELMO. In addition, we report that membrane targeting of ELMO via Arl4A promotes cytoskeletal reorganization including membrane ruffling and stress fiber disassembly via an ELMO-DOCK1800-Rac signaling pathway. We conclude that ELMO is capable of interacting with GTPases from Rho and Arf families, leading to the conclusion that ELMO contains a versatile RBD. Furthermore, via binding of an Arf family GTPase, the ELMO-DOCK180 is uniquely positioned at the membrane to activate Rac signaling and remodel the actin cytoskeleton.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Celular/metabolismo , Transducción de Señal/fisiología , Fibras de Estrés/metabolismo , Factores de Ribosilacion-ADP/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Membrana Celular/genética , Células HEK293 , Células HeLa , Humanos , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Fibras de Estrés/genética , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
3.
J Biol Chem ; 285(17): 13211-22, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20167601

RESUMEN

The Dock180 family of atypical Rho family guanine nucleotide exchange factors (Rho-GEFs) regulate a variety of processes involving cellular or subcellular polarization, including cell migration and phagocytosis. Each contains a Dock homology region-1 (DHR-1) domain that is required to localize its GEF activity to a specific membrane compartment where levels of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) are up-regulated by the local activity of PtdIns 3-kinase. Here we define the structural and energetic bases of phosphoinositide specificity by the DHR-1 domain of Dock1 (a GEF for Rac1), and show that DHR-1 utilizes a C2 domain scaffold and surface loops to create a basic pocket on its upper surface for recognition of the PtdIns(3,4,5)P(3) head group. The pocket has many of the characteristics of those observed in pleckstrin homology domains. We show that point mutations in the pocket that abolish phospholipid binding in vitro ablate the ability of Dock1 to induce cell polarization, and propose a model that brings together recent mechanistic and structural studies to rationalize the central role of DHR-1 in dynamic membrane targeting of the Rho-GEF activity of Dock180.


Asunto(s)
Modelos Moleculares , Proteínas de Unión al GTP rac/química , Animales , Sitios de Unión , Proteínas del Citoesqueleto , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Familia de Multigenes/fisiología , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Relación Estructura-Actividad , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
4.
PLoS One ; 10(3): e0121003, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25826475

RESUMEN

The ability of cancer cells to invade underlies metastatic progression. One mechanism by which cancer cells can become invasive is through the formation of structures called invadopodia, which are dynamic, actin-rich membrane protrusions that are sites of focal extracellular matrix degradation. While there is a growing consensus that invadopodia are instrumental in tumor metastasis, less is known about whether they are involved in tumor growth, particularly in vivo. The adaptor protein Tks5 is an obligate component of invadopodia, and is linked molecularly to both actin-remodeling proteins and pericellular proteases. Tks5 appears to localize exclusively to invadopodia in cancer cells, and in vitro studies have demonstrated its critical requirement for the invasive nature of these cells, making it an ideal surrogate to investigate the role of invadopodia in vivo. In this study, we examined how Tks5 contributes to human breast cancer progression. We used immunohistochemistry and RNA sequencing data to evaluate Tks5 expression in clinical samples, and we characterized the role of Tks5 in breast cancer progression using RNA interference and orthotopic implantation in SCID-Beige mice. We found that Tks5 is expressed to high levels in approximately 50% of primary invasive breast cancers. Furthermore, high expression was correlated with poor outcome, particularly in those patients with late relapse of stage I/II disease. Knockdown of Tks5 expression in breast cancer cells resulted in decreased growth, both in 3D in vitro cultures and in vivo. Moreover, our data also suggest that Tks5 is important for the integrity and permeability of the tumor vasculature. Together, this work establishes an important role for Tks5 in tumor growth in vivo, and suggests that invadopodia may play broad roles in tumor progression.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/fisiología , Neoplasias de la Mama/patología , División Celular/fisiología , Animales , Xenoinjertos , Humanos , Técnicas In Vitro , Ratones , Ratones SCID
5.
Commun Integr Biol ; 6(4): e24298, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23986800

RESUMEN

THE RAS SUPERFAMILY OF PROTEINS CONSISTS OF FIVE BRANCHES: Ras, Rho, Arf, Rab and Ran subfamilies. These proteins are involved in a plethora of biological functions spanning cytoskeletal organization, cell proliferation, transcription and intracellular trafficking. Ras-Binding Domains (RBDs) have classically been identified as autonomous ubiquitin-like folded regions that bind certain activated Ras GTPases of the Ras subfamily. In general, RBDs in many proteins have been tagged with membrane-targeting functions as in the case of the well-characterized c-Raf-RBD/Ras interaction. However, it is becoming apparent that the definition and functions of RBDs need to be revamped in order to reflect the new discoveries associated with this domain. Here, we discuss in more detail the recent advances associated with these RBDs. We highlight research identifying RBDs in formins, ELMOs and the RhoGEF, Syx and discuss the emerging role for RBDs in controlling autoinhibition relief and the newly recognized versatility of RBDs to interact with Rho and Arf family GTPases. In addition, these recent findings raise the exciting hypothesis that functional RBDs remain hidden in the proteome and are ready to be uncovered.

6.
Small GTPases ; 2(5): 268-275, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22292130

RESUMEN

GTPases are central hubs for directing cytoskeletal reorganization and cell migration. The DOCK family enforces positive regulation of certain GTPases, leading to their activation in discrete areas of the cell. ELMO, a well-known DOCK180 binding partner, has been cast with the role of potentiating DOCK180-mediated Rac activation. Exactly how ELMO contributes to Rac signaling is only beginning to be understood. Here, we discuss our most recent research investigating ELMO regulation of the DOCK180/Rac pathway. Interestingly, we found that ELMO is autoinhibited via intramolecular contacts at basal levels and we explore the novel domains that we identified at the heart of the auto-regulatory switch. We propose that the closed ELMO molecule masks protein-protein interfaces or domains with novel uncharacterized function; cell stimulation and GTPase binding to ELMO is proposed to activate (open) the protein and/or target the ELMO/DOCK180 complex to the cell membrane. In this manner, promiscuous signaling/activity downstream of ELMO/DOCK180 can be controlled for both spatially and temporally. Additionally, we report new data highlighting that DOCK proteins can form heterodimers, and we discuss possible mechanisms that could be implicated in controlling the ELMO activation state.

7.
Curr Biol ; 20(22): 2021-7, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21035343

RESUMEN

Dedicator of cytokinesis (DOCK) proteins are guanine nucleotide exchange factors (GEFs) controlling the activity of Rac1/Cdc42 during migration, phagocytosis, and myoblast fusion [1-4]. Engulfment and cell motility (ELMO) proteins bind a subset of DOCK members and are emerging as critical regulators of Rac signaling [5-10]. Although formation of a DOCK180/ELMO complex is not essential for Rac1 activation, ELMO mutants deficient in binding to DOCK180 are unable to promote cytoskeleton remodeling [11]. How ELMO regulates signaling through DOCK GEFs is poorly understood. Here, we identify an autoinhibitory switch in ELMO presenting homology to a regulatory unit described for Dia formins. One part of the switch, composed of a Ras-binding domain (RBD) and Armadillo repeats, is positioned N-terminally while the other is housed in the C terminus. We demonstrate interaction between these fragments, suggesting autoinhibition of ELMO. Using a bioluminescence resonance energy transfer biosensor, we establish that ELMO undergoes conformational changes upon disruption of autoinhibition. We found that engagement of ELMO to RhoG, or with DOCK180, promotes the relief of autoinhibition in ELMO. Functionally, we found that ELMO mutants with impaired autoregulatory activity promote cell elongation. These results demonstrate an unsuspected level of regulation for Rac1 signaling via autoinhibition of ELMO.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Técnicas Biosensibles , Biología Computacional , Secuencia Conservada , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Células HEK293 , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Técnicas del Sistema de Dos Híbridos , Proteínas de Unión al GTP rac/química , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/fisiología
8.
Mol Biol Cell ; 19(11): 4837-51, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18768751

RESUMEN

The mammalian DOCK180 protein belongs to an evolutionarily conserved protein family, which together with ELMO proteins, is essential for activation of Rac GTPase-dependent biological processes. Here, we have analyzed the DOCK180-ELMO1 interaction, and map direct interaction interfaces to the N-terminal 200 amino acids of DOCK180, and to the C-terminal 200 amino acids of ELMO1, comprising the ELMO1 PH domain. Structural and biochemical analysis of this PH domain reveals that it is incapable of phospholipid binding, but instead structurally resembles FERM domains. Moreover, the structure revealed an N-terminal amphiphatic alpha-helix, and point mutants of invariant hydrophobic residues in this helix disrupt ELMO1-DOCK180 complex formation. A secondary interaction between ELMO1 and DOCK180 is conferred by the DOCK180 SH3 domain and proline-rich motifs at the ELMO1 C-terminus. Mutation of both DOCK180-interaction sites on ELMO1 is required to disrupt the DOCK180-ELMO1 complex. Significantly, although this does not affect DOCK180 GEF activity toward Rac in vivo, Rac signaling is impaired, implying additional roles for ELMO in mediating intracellular Rac signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rac/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Secuencia Conservada , Activación Enzimática , Evolución Molecular , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Fosfatidilinositoles/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Propiedades de Superficie , Proteínas de Unión al GTP rac/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA