Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 231(5): 2015-2028, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34096623

RESUMEN

Agricultural management practices that increase soil organic matter (SOM), such as no-tillage (NT) with crop residue retention, together with crop varieties best able to source nutrients from SOM, may help reverse soil degradation and improve soil nutrient supply and uptake by plants in low-input environments of tropical and subtropical areas. Here, we screened germplasm representing genetic diversity within tropical maize breeding programmes in relation to shaping SOM mineralization. Then we assessed effects of contrasting genotypes on nitrification rates, and genotype-by-management history interactions on these rates. SOM-C mineralization and gross nitrification rates varied under different maize genotypes. Cumulative SOM-C mineralization increased with root diameter but decreased with increasing root length. Strong influences of management history and interaction of maize genotype-by-management history on nitrification were observed. Overall, nitrification rates were higher in NT soil with residue retention. We propose that there is potential to exploit genotypic variation in traits associated with SOM mineralization and nitrification within breeding programmes. Root diameter and length could be used as proxies for root-soil interactions driving these processes. Development of maize varieties with enhanced ability to mineralize SOM combined with NT and residue retention to build/replenish SOM could be key to sustainable production.


Asunto(s)
Suelo , Zea mays , Agricultura , Genotipo , Nitrificación , Fitomejoramiento , Zea mays/genética
2.
New Phytol ; 206(1): 107-117, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25866856

RESUMEN

Intercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering 'sustainable intensification'. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and species ­ for example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above- and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.


Asunto(s)
Agricultura/métodos , Conservación de los Recursos Naturales , Productos Agrícolas/crecimiento & desarrollo , Cruzamiento , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Ecología , Ecosistema , Fenómenos Fisiológicos de las Plantas , Investigación , Suelo
3.
J Environ Manage ; 150: 427-434, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25560657

RESUMEN

Increased concentrations and loads of soluble, bioavailable forms of phosphorus (P) are a major cause of eutrophication in streams, rivers and lakes in many countries around the world. To implement P control measures, it is essential to identify P sources and their relative load contributions. A proportion of P loading generated from household wastewaters is derived from detergents yet the P compositions of the range of domestic detergents and their usage is poorly understood. To quantify P loads from household detergents, we analysed a large range of detergents and cleaning products commonly available in the UK and Europe, comparing regular and eco-labelled products. Chemical data were coupled with survey results on typical household detergents preferences and usage (n = 95 households). We also determined whether the major and trace element signatures of these household detergents could potentially be used as anthropogenic tracers in watercourses. The greatest P concentrations were found for regular dishwasher detergents (43-131 mg P/g detergent) whilst the range of P in eco-labelled dishwasher detergents was much lower (0.7-9.1 mg P/g detergent). Other household cleaning groups contained relatively smaller P concentrations. Considering the survey results, detergents' total P loading generated from one household using either regular or eco labelled products, was 0.414 and 0.021 kg P/year, respectively. Given a household occupancy of 2.7, the P load from all detergent use combined was 0.154 kg P/person/year of which the dishwasher contribution was 0.147 kg P/person/year. In terms of elemental signatures, (DWD) dishwasher detergents were significantly (P-value <0.001) different from other household cleaning products in their As, Na, TP, Si, Sr, SRP, Ti, Zn and Zr signatures. Na, P and B were all positively correlated with each other, indicating their potential use as a tracer suite for septic tank effluent in combination with other indices. We conclude that forthcoming legislation for reducing P contents in domestic laundry detergents will not address the dominant environmental P load from DWD and studies such as this are important in promoting and allowing scenarios of benefits from future legislation for DWD.


Asunto(s)
Eutrofización , Fósforo/química , Contaminantes Químicos del Agua/química , Detergentes/química , Drenaje de Agua/estadística & datos numéricos , Monitoreo del Ambiente , Europa (Continente) , Composición Familiar , Humanos , Contaminación del Agua/legislación & jurisprudencia , Contaminación del Agua/prevención & control
4.
mSystems ; 7(6): e0093422, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36342125

RESUMEN

The microbiota populating the rhizosphere, the interface between roots and soil, can modulate plant growth, development, and health. These microbial communities are not stochastically assembled from the surrounding soil, but their composition and putative function are controlled, at least partially, by the host plant. Here, we use the staple cereal barley as a model to gain novel insights into the impact of differential applications of nitrogen, a rate-limiting step for global crop production, on the host genetic control of the rhizosphere microbiota. Using a high-throughput amplicon sequencing survey, we determined that nitrogen availability for plant uptake is a factor promoting the selective enrichment of individual taxa in the rhizosphere of wild and domesticated barley genotypes. Shotgun sequencing and metagenome-assembled genomes revealed that this taxonomic diversification is mirrored by a functional specialization, manifested by the differential enrichment of multiple Gene Ontology terms, of the microbiota of plants exposed to nitrogen conditions limiting barley growth. Finally, a plant soil feedback experiment revealed that host control of the barley microbiota underpins the assembly of a phylogenetically diverse group of bacteria putatively required to sustain plant performance under nitrogen-limiting supplies. Taken together, our observations indicate that under nitrogen conditions limiting plant growth, host-microbe and microbe-microbe interactions fine-tune the host genetic selection of the barley microbiota at both taxonomic and functional levels. The disruption of these recruitment cues negatively impacts plant growth. IMPORTANCE The microbiota inhabiting the rhizosphere, the thin layer of soil surrounding plant roots, can promote the growth, development, and health of their host plants. Previous research indicated that differences in the genetic composition of the host plant coincide with variations in the composition of the rhizosphere microbiota. This is particularly evident when looking at the microbiota associated with input-demanding modern cultivated varieties and their wild relatives, which have evolved under marginal conditions. However, the functional significance of these differences remains to be fully elucidated. We investigated the rhizosphere microbiota of wild and cultivated genotypes of the global crop barley and determined that nutrient conditions limiting plant growth amplify the host control on microbes at the root-soil interface. This is reflected in a plant- and genotype-dependent functional specialization of the rhizosphere microbiota, which appears to be required for optimal plant growth. These findings provide novel insights into the significance of the rhizosphere microbiota for plant growth and sustainable agriculture.


Asunto(s)
Hordeum , Microbiota , Rizosfera , Hordeum/microbiología , Nitrógeno , Raíces de Plantas , Microbiota/genética , Suelo , Genotipo
5.
Artif Organs ; 35(5): 522-33, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21595722

RESUMEN

This article summarizes the use of computational fluid dynamics (CFD) to design a novel suspended Tesla left ventricular assist device. Several design variants were analyzed to study the parameters affecting device performance. CFD was performed at pump speeds of 6500, 6750, and 7000 rpm and at flow rates varying from 3 to 7 liters per minute (LPM). The CFD showed that shortening the plates nearest the pump inlet reduced the separations formed beneath the upper plate leading edges and provided a more uniform flow distribution through the rotor gaps, both of which positively affected the device hydrodynamic performance. The final pump design was found to produce a head rise of 77 mm Hg with a hydraulic efficiency of 16% at the design conditions of 6 LPM through flow and a 6750 rpm rotation rate. To assess the device hemodynamics the strain rate fields were evaluated. The wall shear stresses demonstrated that the pump wall shear stresses were likely adequate to inhibit thrombus deposition. Finally, an integrated field hemolysis model was applied to the CFD results to assess the effects of design variation and operating conditions on the device hemolytic performance.


Asunto(s)
Simulación por Computador , Diseño Asistido por Computadora , Insuficiencia Cardíaca/terapia , Corazón Auxiliar , Hidrodinámica , Función Ventricular Izquierda , Fenómenos Biomecánicos , Insuficiencia Cardíaca/fisiopatología , Corazón Auxiliar/efectos adversos , Hemodinámica , Hemólisis , Humanos , Modelos Cardiovasculares , Diseño de Prótesis , Estrés Mecánico
6.
J Biomech Eng ; 133(4): 041002, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21428676

RESUMEN

This study is part of a FDA-sponsored project to evaluate the use and limitations of computational fluid dynamics (CFD) in assessing blood flow parameters related to medical device safety. In an interlaboratory study, fluid velocities and pressures were measured in a nozzle model to provide experimental validation for a companion round-robin CFD study. The simple benchmark nozzle model, which mimicked the flow fields in several medical devices, consisted of a gradual flow constriction, a narrow throat region, and a sudden expansion region where a fluid jet exited the center of the nozzle with recirculation zones near the model walls. Measurements of mean velocity and turbulent flow quantities were made in the benchmark device at three independent laboratories using particle image velocimetry (PIV). Flow measurements were performed over a range of nozzle throat Reynolds numbers (Re(throat)) from 500 to 6500, covering the laminar, transitional, and turbulent flow regimes. A standard operating procedure was developed for performing experiments under controlled temperature and flow conditions and for minimizing systematic errors during PIV image acquisition and processing. For laminar (Re(throat)=500) and turbulent flow conditions (Re(throat)≥3500), the velocities measured by the three laboratories were similar with an interlaboratory uncertainty of ∼10% at most of the locations. However, for the transitional flow case (Re(throat)=2000), the uncertainty in the size and the velocity of the jet at the nozzle exit increased to ∼60% and was very sensitive to the flow conditions. An error analysis showed that by minimizing the variability in the experimental parameters such as flow rate and fluid viscosity to less than 5% and by matching the inlet turbulence level between the laboratories, the uncertainties in the velocities of the transitional flow case could be reduced to ∼15%. The experimental procedure and flow results from this interlaboratory study (available at http://fdacfd.nci.nih.gov) will be useful in validating CFD simulations of the benchmark nozzle model and in performing PIV studies on other medical device models.


Asunto(s)
Benchmarking , Simulación por Computador , Hidrodinámica , Laboratorios , Reología , United States Food and Drug Administration , Algoritmos , Presión , Reproducibilidad de los Resultados , Estados Unidos
7.
J Biomech Eng ; 132(3): 031009, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20459197

RESUMEN

Numerical simulations are performed to investigate the flow within the end-to-side proximal anastomosis of a pulsatile pediatric ventricular assist device (PVAD) to an aorta. The anastomotic model is constructed from a patient-specific pediatric aorta. The three great vessels originating from the aortic arch--brachiocephalic (innominate), left common carotid, and left subclavian arteries--are included. An implicit large eddy simulation method based on a finite volume approach is used to study the resulting turbulent flow. A resistance boundary condition is applied at each branch outlet to study flow splitting. The PVAD anastomosis is found to alter the aortic flow dramatically. More flow is diverted into the great vessels with the PVAD support. Turbulence is found in the jet impingement area at peak systole for 100% bypass, and a maximum principal normal Reynolds stress of 7081 dyn/cm(2) is estimated based on ten flow cycles. This may be high enough to cause hemolysis and platelet activation. Regions prone to intimal hyperplasia are identified by combining the time-averaged wall shear stress and oscillatory shear index. These regions are found to vary, depending on the percentage of the flow bypass.


Asunto(s)
Anastomosis Quirúrgica/instrumentación , Ventrículos Cardíacos/cirugía , Corazón Auxiliar , Modelos Cardiovasculares , Flujo Pulsátil/fisiología , Función Ventricular/fisiología , Niño , Simulación por Computador , Diseño Asistido por Computadora , Análisis de Falla de Equipo , Humanos , Diseño de Prótesis
9.
Plant Soil ; 456(1): 355-367, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33087989

RESUMEN

AIMS: The capacity of plant roots to directly acquire organic nitrogen (N) in the form of oligopeptides and amino acids from soil is well established. However, plants have poor access to protein, the central reservoir of soil organic N. Our question is: do plants actively secrete proteases to enhance the breakdown of soil protein or are they functionally reliant on soil microorganisms to undertake this role? METHODS: Growing maize and wheat under sterile hydroponic conditions with and without inorganic N, we measured protease activity on the root surface (root-bound proteases) or exogenously in the solution (free proteases). We compared root protease activities to the rhizosphere microbial community to estimate the ecological significance of root-derived proteases. RESULTS: We found little evidence for the secretion of free proteases, with almost all protease activity associated with the root surface. Root protease activity was not stimulated under N deficiency. Our findings suggest that cereal roots contribute one-fifth of rhizosphere protease activity. CONCLUSIONS: Our results indicate that plant N uptake is only functionally significant when soil protein is in direct contact with root surfaces. The lack of protease upregulation under N deficiency suggests that root protease activity is unrelated to enhanced soil N capture.

10.
Tree Physiol ; 40(5): 621-636, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32050021

RESUMEN

Herbivory is one of the most globally distributed disturbances affecting carbon (C)-cycling in trees, yet our understanding of how it alters tree C-allocation to different functions such as storage, growth or rhizodeposition is still limited. Prioritized C-allocation to storage replenishment vs growth could explain the fast recovery of C-storage pools frequently observed in growth-reduced defoliated trees. We performed continuous 13C-labeling coupled to clipping to quantify the effects of simulated browsing on the growth, leaf morphology and relative allocation of stored vs recently assimilated C to the growth (bulk biomass) and non-structural carbohydrate (NSC) stores (soluble sugars and starch) of the different organs of two tree species: diffuse-porous (Betula pubescens Ehrh.) and ring-porous (Quercus petraea [Matt.] Liebl.). Carbon-transfers from plants to bulk and rhizosphere soil were also evaluated. Clipped birch and oak trees shifted their C-allocation patterns above-ground as a means to recover from defoliation. However, such increased allocation to current-year stems and leaves did not entail reductions in the allocation to the rhizosphere, which remained unchanged between clipped and control trees of both species. Betula pubescens and Q. petraea showed differences in their vulnerability and recovery strategies to clipping, the ring-porous species being less affected in terms of growth and architecture by clipping than the diffuse-porous. These contrasting patterns could be partly explained by differences in their C cycling after clipping. Defoliated oaks showed a faster recovery of their canopy biomass, which was supported by increased allocation of new C, but associated with large decreases in their fine root biomass. Following clipping, both species recovered NSC pools to a larger extent than growth, but the allocation of 13C-labeled photo-assimilates into storage compounds was not increased as compared with controls. Despite their different response to clipping, our results indicate no preventative allocation into storage occurred during the first year after clipping in either of the species.


Asunto(s)
Quercus , Betula , Carbono , Hojas de la Planta , Estaciones del Año , Árboles
11.
Sci Rep ; 10(1): 12916, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32737353

RESUMEN

The microbiota thriving in the rhizosphere, the thin layer of soil surrounding plant roots, plays a critical role in plant's adaptation to the environment. Domestication and breeding selection have progressively differentiated the microbiota of modern crops from the ones of their wild ancestors. However, the impact of eco-geographical constraints faced by domesticated plants and crop wild relatives on recruitment and maintenance of the rhizosphere microbiota remains to be fully elucidated. Here we performed a comparative 16S rRNA gene survey of the rhizosphere of 4 domesticated and 20 wild barley (Hordeum vulgare) genotypes grown in an agricultural soil under controlled environmental conditions. We demonstrated the enrichment of individual bacteria mirrored the distinct eco-geographical constraints faced by their host plants. Unexpectedly, Elite varieties exerted a stronger genotype effect on the rhizosphere microbiota when compared with wild barley genotypes adapted to desert environments with a preferential enrichment for members of Actinobacteria. Finally, in wild barley genotypes, we discovered a limited, but significant, correlation between microbiota diversity and host genomic diversity. Our results revealed a footprint of the host's adaptation to the environment on the assembly of the bacteria thriving at the root-soil interface. In the tested conditions, this recruitment cue layered atop of the distinct evolutionary trajectories of wild and domesticated plants and, at least in part, is encoded by the barley genome. This knowledge will be critical to design experimental approaches aimed at elucidating the recruitment cues of the barley microbiota across a range of soil types.


Asunto(s)
Actinobacteria , Productos Agrícolas , Hordeum , Microbiota/fisiología , Raíces de Plantas , Rizosfera , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Hordeum/crecimiento & desarrollo , Hordeum/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología
12.
New Phytol ; 184(1): 19-33, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19740278

RESUMEN

For soils in carbon balance, losses of soil carbon from biological activity are balanced by organic inputs from vegetation. Perturbations, such as climate or land use change, have the potential to disrupt this balance and alter soil-atmosphere carbon exchanges. As the quantification of soil organic matter stocks is an insensitive means of detecting changes, certainly over short timescales, there is a need to apply methods that facilitate a quantitative understanding of the biological processes underlying soil carbon balance. We outline the processes by which plant carbon enters the soil and critically evaluate isotopic methods to quantify them. Then, we consider the balancing CO(2) flux from soil and detail the importance of partitioning the sources of this flux into those from recent plant assimilate and those from native soil organic matter. Finally, we consider the interactions between the inputs of carbon to soil and the losses from soil mediated by biological activity. We emphasize the key functional role of the microbiota in the concurrent processing of carbon from recent plant inputs and native soil organic matter. We conclude that quantitative isotope labelling and partitioning methods, coupled to those for the quantification of microbial community substrate use, offer the potential to resolve the functioning of the microbial control point of soil carbon balance in unprecedented detail.


Asunto(s)
Bacterias/metabolismo , Carbono/metabolismo , Marcaje Isotópico/métodos , Microbiología del Suelo , Suelo/análisis
13.
New Phytol ; 182(2): 359-366, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19320835

RESUMEN

The overstorey coniferous trees and understorey ericaceous dwarf shrubs of northern temperate and boreal forests have previously been considered to form mycorrhizas with taxonomically and functionally distinct groups of fungi. Here, we tested the hypothesis that Meliniomyces variabilis and Meliniomyces bicolor, isolated from Piceirhiza bicolorata ectomycorrhizas of pine, can function as ericoid mycorrhizal symbionts with Vaccinium vitis-idaea. We used split-compartment microcosms to measure the reciprocal exchange of (13)C and (15)N between V. vitis-idaea and three fungal isolates in the Hymenoscyphus ericae aggregate isolated from Scots pine ectomycorrhizas (M. variabilis and M. bicolor) or Vaccinium roots (M. variabilis). The extramatrical fungal mycelium of labelled mycorrhizal plants was significantly enriched in (13)C, and the leaves were significantly enriched in (15)N, compared with nonmycorrhizal and nonlabelled controls. * These findings show for the first time that fungi in the H. ericae aggregate, isolated from pine ectomycorrhizas, can transfer C and N and can thus form functional ericoid mycorrhizas in an understorey ericaceous shrub.


Asunto(s)
Ascomicetos/fisiología , Carbono/metabolismo , Micorrizas/fisiología , Nitrógeno/metabolismo , Pinus/metabolismo , Vaccinium vitis-Idaea/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Isótopos de Carbono , Micorrizas/metabolismo , Isótopos de Nitrógeno , Filogenia , Pinus/microbiología , Hojas de la Planta/metabolismo , Vaccinium vitis-Idaea/microbiología , Vaccinium vitis-Idaea/fisiología
14.
J Biomech Eng ; 131(11): 111005, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20353256

RESUMEN

We use an implicit large eddy simulation (ILES) method based on a finite volume approach to capture the turbulence in the anastomoses of a left ventricular assist device (LVAD) to the aorta. The order-of-accuracy of the numerical schemes is computed using a two-dimensional decaying Taylor-Green vortex. The ILES method is carefully validated by comparing to documented results for a fully developed turbulent channel flow at Re(tau)=395. Two different anastomotic flows (proximal and distal) are simulated for 50% and 100% LVAD supports and the results are compared with a healthy aortic flow. All the analyses are based on a planar aortic model under steady inflow conditions for simplification. Our results reveal that the outflow cannulae induce high exit jet flows in the aorta, resulting in turbulent flow. The distal configuration causes more turbulence in the aorta than the proximal configuration. The turbulence, however, may not cause any hemolysis due to low Reynolds stresses and relatively large Kolmogorov length scales compared with red blood cells. The LVAD support causes an acute increase in flow splitting in the major branch vessels for both anastomotic configurations, although its long-term effect on the flow splitting remains unknown. A large increase in wall shear stress is found near the cannulation sites during the LVAD support. This work builds a foundation for more physiologically realistic simulations under pulsatile flow conditions.


Asunto(s)
Aorta/fisiología , Aorta/fisiopatología , Ventrículos Cardíacos/fisiopatología , Corazón Auxiliar , Hemodinámica/fisiología , Adulto , Aorta/cirugía , Ventrículos Cardíacos/cirugía , Hemólisis , Humanos , Flujo Pulsátil , Estrés Mecánico , Factores de Tiempo
15.
J Biomech Eng ; 131(9): 091002, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19725691

RESUMEN

The canine nasal cavity contains a complex airway labyrinth, dedicated to respiratory air conditioning, filtering of inspired contaminants, and olfaction. The small and contorted anatomical structure of the nasal turbinates has, to date, precluded a proper study of nasal airflow in the dog. This study describes the development of a high-fidelity computational fluid dynamics (CFD) model of the canine nasal airway from a three-dimensional reconstruction of high-resolution magnetic resonance imaging scans of the canine anatomy. Unstructured hexahedral grids are generated, with large grid sizes ((10-100) x 10(6) computational cells) required to capture the details of the nasal airways. High-fidelity CFD solutions of the nasal airflow for steady inspiration and expiration are computed over a range of physiological airflow rates. A rigorous grid refinement study is performed, which also illustrates a methodology for verification of CFD calculations on complex unstructured grids in tortuous airways. In general, the qualitative characteristics of the computed solutions for the different grid resolutions are fairly well preserved. However, quantitative results such as the overall pressure drop and even the regional distribution of airflow in the nasal cavity are moderately grid dependent. These quantities tend to converge monotonically with grid refinement. Lastly, transient computations of canine sniffing were carried out as part of a time-step study, demonstrating that high temporal accuracy is achievable using small time steps consisting of 160 steps per sniff period. Here we demonstrate that acceptable numerical accuracy (between approximately 1% and 15%) is achievable with practical levels of grid resolution (approximately 100 x 10(6) computational cells). Given the popularity of CFD as a tool for studying flow in the upper airways of humans and animals, based on this work we recommend the necessity of a grid dependence study and quantification of numerical error when presenting CFD results in complicated airways.


Asunto(s)
Modelos Biológicos , Cavidad Nasal/fisiología , Ventilación Pulmonar/fisiología , Reología/métodos , Animales , Simulación por Computador , Perros
16.
J Biomech Eng ; 131(11): 111009, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20353260

RESUMEN

Computational fluid dynamics (CFD) is used to asses the hydrodynamic performance of a positive displacement left ventricular assist device. The computational model uses implicit large eddy simulation direct resolution of the chamber compression and modeled valve closure to reproduce the in vitro results. The computations are validated through comparisons with experimental particle image velocimetry (PIV) data. Qualitative comparisons of flow patterns, velocity fields, and wall-shear rates demonstrate a high level of agreement between the computations and experiments. Quantitatively, the PIV and CFD show similar probed velocity histories, closely matching jet velocities and comparable wall-strain rates. Overall, it has been shown that CFD can provide detailed flow field and wall-strain rate data, which is important in evaluating blood pump performance.


Asunto(s)
Corazón Auxiliar , Investigación , Reología/instrumentación , Diagnóstico por Imagen/métodos , Humanos , Reología/métodos
17.
Front Plant Sci ; 10: 215, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30858863

RESUMEN

Current niche models cannot explain multi-species plant coexistence in complex ecosystems. One overlooked explanatory factor is within-growing season temporal dynamism of resource capture by plants. However, the timing and rate of resource capture are themselves likely to be mediated by plant-plant competition. This study used Barley (Hordeum sp.) as a model species to examine the impacts of intra-specific competition, specifically inter- and intra-cultivar competition on the temporal dynamics of resource capture. Nitrogen and biomass accumulation of an early and late cultivar grown in isolation, inter- or intra- cultivar competition were investigated using sequential harvests. We did not find changes in the temporal dynamics of biomass accumulation in response to competition. However, peak nitrogen accumulation rate was significantly delayed for the late cultivar by 14.5 days and advanced in the early cultivar by 0.5 days when in intra-cultivar competition; there were no significant changes when in inter-cultivar competition. This may suggest a form of kin recognition as the target plants appeared to identify their neighbors and only responded temporally to intra-cultivar competition. The Relative Intensity Index found competition occurred in both the intra- and inter- cultivar mixtures, but a positive Land Equivalence Ratio value indicated complementarity in the inter-cultivar mixtures compared to intra-cultivar mixtures. The reason for this is unclear but may be due to the timing of the final harvest and may not be representative of the relationship between the competing plants. This study demonstrates neighbor-identity-specific changes in temporal dynamism in nutrient uptake. This contributes to our fundamental understanding of plant nutrient dynamics and plant-plant competition whilst having relevance to sustainable agriculture. Improved understanding of within-growing season temporal dynamism would also improve our understanding of coexistence in complex plant communities.

18.
Trends Ecol Evol ; 33(4): 277-286, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29429765

RESUMEN

Temporal dynamism of plant resource capture, and its impacts on plant-plant interactions, can have important regulatory roles in multispecies communities. For example, by modifying resource acquisition timing, plants might reduce competition and promote their coexistence. However, despite the potential wide ecological relevance of this topic, short-term (within growing season) temporal dynamism has been overlooked. This is partially a consequence of historic reliance on measures made at single points in time. We propose that with current technological advances this is a golden opportunity to study within growing season temporal dynamism of resource capture by plants in highly informative ways. We set out here an agenda for future developments in this research field, and explore how new technologies can deliver this agenda.


Asunto(s)
Botánica/instrumentación , Fenómenos Fisiológicos de las Plantas , Plantas/metabolismo , Estaciones del Año
19.
Sci Rep ; 8(1): 11186, 2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30046143

RESUMEN

Proteins play a crucial role in many soil processes, however, standardised methods to extract soluble protein from soil are lacking. The aim of this study was to compare the ability of different extractants to quantify the recovery of soluble proteins from three soil types (Cambisol, Ferralsol and Histosol) with contrasting clay and organic matter contents. Known amounts of plant-derived 14C-labelled soluble proteins were incubated with soil and then extracted with solutions of contrasting pH, concentration and polarity. Protein recovery proved highly solvent and soil dependent (Histosol > Cambisol > Ferralsol) and no single extractant was capable of complete protein recovery. In comparison to deionised water (10-60% of the total protein recovered), maximal recovery was observed with NaOH (0.1 M; 61-80%) and Na-pyrophosphate (0.05 M, pH 7.0; 45-75% recovery). We conclude that the dependence of protein recovery on both extractant and soil type prevents direct comparison of studies using different recovery methods, particularly if no extraction controls are used. We present recommendations for a standard protein extraction protocol.

20.
Environ Pollut ; 228: 245-255, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28550797

RESUMEN

Septic tank effluent (STE) contributes to catchment nutrient and pollutant loads. To assess the role of STE discharges in impairment of surface water, it is essential to identify the sources of pollution by tracing contaminants in watercourses. We examined tracers that were present in STE to establish their potential for identifying STE contamination in two stream systems (low and high dilution levels) against the background of upstream sources. The studied tracers were microbial, organic matter fluorescence, caffeine, artificial sweeteners and effluent chemical concentrations. The results revealed that tracer concentration ratios Cl/EC, Cl/NH4-N, Cl/TN, Cl/TSS, Cl/turbidity, Cl/total coliforms, Cl/sucralose, Cl/saccharin and Cl/Zn had potential as tracers in the stream with low dilution level (P < 0.05). Fluorescence spectroscopy could detect STE inputs through the presence of the tryptophan-like peak, but was limited to water courses with low level of dilution and was positively correlated with stream Escherichia coli (E. coli) and soluble reactive phosphorus (SRP). The results also suggested that caffeine and artificial sweeteners can be suitable tracers for effluent discharge in streams with low and high level of dilution. Caffeine and saccharin were positively correlated with faecal coliforms, E. coli, total P and SRP, indicating their potential to trace discharge of a faecal origin and to be a marker for effluent P. Caffeine and SRP had similar attenuation behaviour in the receiving stream waters suggesting caffeine's potential role as a surrogate indicator for the behaviour of P downstream of effluent inputs. Taken together, results suggest that a single tracer alone was not sufficient to evaluate STE contamination of watercourses, but rather a combination of multiple chemical and physical tracing approaches should be employed. A multiple tracing approach would help to identify individual and cumulative STE inputs that pose risks to stream waters in order to prioritise and target effective mitigation measures.


Asunto(s)
Monitoreo del Ambiente/métodos , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis , Líquidos Corporales , Escherichia coli , Heces/química , Fósforo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA