Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38406770

RESUMEN

Understanding the dynamics of malaria vectors and their interactions with environmental factors is crucial for effective malaria control. This study investigated the abundance, species composition, seasonal variations, and malaria infection status of female mosquitoes in malaria transmission and non-transmission areas in Western Thailand. Additionally, the susceptibility of malaria vectors to pyrethroid insecticides was assessed. Entomological field surveys were conducted during the hot, wet, and cold seasons in both malaria transmission areas (TA) and non-transmission areas (NTA). The abundance and species composition of malaria vectors were compared between TA and NTA. The availability of larval habitats and the impact of seasonality on vector abundance were analyzed. Infection with Plasmodium spp. in primary malaria vectors was determined using molecular techniques. Furthermore, the susceptibility of malaria vectors to pyrethroids was evaluated using the World Health Organization (WHO) susceptibility test. A total of 9799 female mosquitoes belonging to 54 species and 11 genera were collected using various trapping methods. The number of malaria vectors was significantly higher in TA compared to NTA (P < 0.001). Anopheles minimus and An. aconitus were the predominant species in TA, comprising over 50% and 30% of the total mosquitoes collected, respectively. Seasonality had a significant effect on the availability of larval habitats in both areas (P < 0.05) but did not impact the abundance of adult vectors (P > 0.05). The primary malaria vectors tested were not infected with Plasmodium spp. The WHO susceptibility test revealed high susceptibility of malaria vectors to pyrethroids, with mortality rates of 99-100% at discriminating concentrations. The higher abundance of malaria vectors in the transmission areas underscores the need for targeted control measures in these regions. The susceptibility of malaria vectors to pyrethroids suggests the continued effectiveness of this class of insecticides for vector control interventions. Other factors influencing malaria transmission risk in the study areas are discussed. These findings contribute to our understanding of malaria vectors and can inform evidence-based strategies for malaria control and elimination efforts in Western Thailand.

2.
Acta Trop ; 236: 106695, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36122761

RESUMEN

BACKGROUND: The frequent use of insecticides in vector control causes the development of insecticide resistance. Insect growth regulators (IGRs), which effect insect development, are used as a promising alternative to control resistant insect vectors. This study aimed to develop novel effective tools for Aedes aegypti control by evaluating the efficacy of different IGRs on larval development, blood feeding capacity, fecundity, and fertility in females and sperm productivity in males across geographical regions of Thailand. METHODS: The efficacy of 16 technical grade IGRs were evaluated against laboratory strain Ae. aegypti larvae in order to determine their emergence inhibition (EI) at 50% and 95% under laboratory conditions. Six IGRs were selected for fecundity, fertility, and sperm productivity studies using feed-through treatments at EI95 concentration levels against adult Ae. aegypti field strains. RESULTS: The results from larval bioassay tests indicate that juvenile hormone mimics (EI50 = 0.010-0.229 ppb; EI95 = 0.066-1.118 ppb) and chitin synthesis inhibitors affecting CHS1 (EI50 = 0.240-2.412 ppb; EI95 = 0.444-4.040 ppb) groups effectively inhibited adult Ae. aegypti emergence. Methoprene and fenoxycarb significantly reduced blood feeding capacity. Egg production was comparable among strains while methoprene, pyriproxyfen and diflubenzuron induced egg production. Egg retention was detected in females fed on diflubenzuron. Methoprene, fenoxycarb, diflubenzuron, and teflubenzuron reduced egg hatching rates in mosquito field strains compared to laboratory strain. Male mosquitoes fed on fenoxycarb showed significantly lower sperm production compared to other treatments. CONCLUSION: Juvenile hormone analogues and chitin synthesis inhibitors affecting CHS1 groups showed excellent results in adult emergence inhibition in this study. They also disrupted reproductive systems in both adult males and females. This study suggested that they can be used as an alternative larvicide in mosquito control programs.


Asunto(s)
Aedes , Diflubenzurón , Insecticidas , Animales , Quitina/farmacología , Diflubenzurón/farmacología , Femenino , Insecticidas/farmacología , Hormonas Juveniles/farmacología , Larva , Masculino , Metopreno/farmacología , Control de Mosquitos/métodos , Mosquitos Vectores , Fenilcarbamatos , Semen , Tailandia
3.
Acta Trop ; 220: 105953, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33979638

RESUMEN

Several light trap devices have been invented and developed to assess the abundance of sand flies. Traps available in the market have different designs and attractant combinations to catch sand fly vectors. We evaluated the efficacy of four commercial light traps and determined the effect of trap placement and carbon dioxide (CO2) on sand fly collection in northern Thailand. Trap evaluations were conducted at two natural caves located in Chiang Rai province, Thailand. In the first part of the study, the efficacies of four trap types including the Centers for Disease Control miniature light trap (CDC LT), Encephalitis Vector Survey trap (EVS), CDC Updraft Blacklight trap (CDC UB), and Laika trap (LK) were evaluated and compared using a Latin square experimental design. The second half of the study evaluated the influence of trap placement and CO2 on sand fly collection. Additionally, CDC LT were placed inside, outside, and at the entrance of caves to compare the number of sand flies collected. For the trap efficacy experiment, a total of 11,876 phlebotomine sand flies were collected over 32 trap-nights. Results demonstrated that CDC LT, CDC UB, and LK collected significantly more sand flies than EVS (P > 0.05). However, there were no significant differences between the numbers of sand flies collected by CDC LT, CDC UB, and LK. A total of 6,698 sand flies were collected from the trap placement and CO2 experiment over 72 trap-nights. Results showed that CO2 did not influence the numbers of sand flies captured (P < 0.05), whereas trap placement at the entrance of the caves resulted in collection of significantly more sand flies than traps placed inside and outside of the caves. We found the CDC LT, CDC UB, and LK without CO2 captured the greatest amount of sand flies. This was particularly observed when traps were placed at the entrance of a cave, perhaps because of the greater passage of stimuli caused by wind flow at the entrance of the cave. The light traps in this study can be used effectively to collect sand fly vectors in northern Thailand.


Asunto(s)
Dióxido de Carbono , Control de Insectos/métodos , Phlebotomus , Psychodidae , Animales , Cuevas , Vectores de Enfermedades , Control de Insectos/instrumentación , Tailandia
4.
Parasit Vectors ; 14(1): 352, 2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34217359

RESUMEN

BACKGROUND: Phlebotomine sand flies are vectors of Leishmania spp. At least 27 species of sand flies have been recorded in Thailand. Although human leishmaniasis cases in Thailand are mainly imported, autochthonous leishmaniasis has been increasingly reported in several regions of the country since 1999. Few studies have detected Leishmania infection in wild-caught sand flies, although these studies were carried out only in those areas reporting human leishmaniasis cases. The aim of this study was therefore to identity sand fly species and to investigate Leishmania infection across six provinces of Thailand. METHODS: Species of wild-caught sand flies were initially identified based on morphological characters. However, problems identifying cryptic species complexes necessitated molecular identification using DNA barcoding in parallel with identification based on morphological characters. The wild-caught sand flies were pooled and the DNA isolated prior to the detection of Leishmania infection by a TaqMan real-time PCR assay. RESULTS: A total of 4498 sand flies (1158 males and 3340 females) were caught by trapping in six provinces in four regions of Thailand. The sand flies were morphologically classified into eight species belonging to three genera (Sergentomyia, Phlebotomus and Idiophlebotomus). Sergentomyia iyengari was found at all collection sites and was the dominant species at most of these, followed in frequency by Sergentomyia barraudi and Phlebotomus stantoni, respectively. DNA barcodes generated from 68 sand flies allowed sorting into 14 distinct species with 25 operational taxonomic units, indicating a higher diversity (by 75%) than that based on morphological identification. Twelve barcoding sequences could not be assigned to any species for which cytochrome c oxidase subunit I sequences are available. All tested sand flies were negative for Leishmania DNA. CONCLUSIONS: Our results confirm the presence of several sand fly species in different provinces of Thailand, highlighting the importance of using DNA barcoding as a tool to study sand fly species diversity. While all female sand flies tested in this study were negative for Leishmania, the circulation of Leishmania spp. in the investigated areas cannot be ruled out.


Asunto(s)
Insectos Vectores/parasitología , Leishmania/genética , Leishmania/aislamiento & purificación , Leishmaniasis/transmisión , Psychodidae/parasitología , Animales , ADN Protozoario/análisis , Femenino , Leishmaniasis/prevención & control , Masculino , Tailandia
5.
Pathogens ; 10(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34684183

RESUMEN

Individual houses with high risks of dengue virus (DENV) transmission might be a source of virus transmission within the neighborhood. We conducted an entomological risk assessment for DENV transmission at the household level, comprising family cohort members residing in the same location, to assess the risk for dengue virus transmitted by mosquito vectors. The studies were conducted in Kamphaeng Phet Province, Thailand, during 2016-2020. Entomological investigations were performed in 35 cohort families on day 1 and day 14 after receiving dengue case reports. DENV was found in 22 Aedes samples (4.9%) out of 451 tested samples. A significantly higher DENV infection rate was detected in vectors collected on day 1 (6.64%) compared to those collected on day 14 (1.82%). Annual vector surveillance was carried out in 732 houses, with 1002 traps catching 3653 Aedes females. The majority of the 13,228 water containers examined were made from plastic and clay, with used tires serving as a primary container, with 59.55% larval abundance. Larval indices, as indicators of dengue epidemics and to evaluate disease and vector control approaches, were calculated. As a result, high values of larval indices indicated the considerably high risk of dengue transmission in these communities.

6.
Parasit Vectors ; 12(1): 357, 2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324262

RESUMEN

BACKGROUND: Evaluating and improving mating success and competitive ability of laboratory-reared transgenic mosquito strains will enhance the effectiveness of proposed disease-control strategies that involve deployment of transgenic strains. Two components of the mosquito rearing process, larval diet quantity and aquatic environment - which are linked to physiological and behavioural differences in adults - are both relatively easy to manipulate. In mosquitoes, as for many other arthropod species, the quality of the juvenile habitat is strongly associated with adult fitness characteristics, such as longevity and fecundity. However, the influence of larval conditioning on mating performance is poorly understood. Here, we investigated the combined effects of larval diet amount and environmental water source on adult male mating success in a genetically modified strain of Aedes aegypti mosquitoes in competition with wild-type conspecifics. Importantly, this research was conducted in a field setting using low generation laboratory and wild-type lines. RESULTS: By controlling larval diet (high and low) and rearing water source (field-collected and laboratory water), we generated four treatment lines of a genetically modified strain of Ae. aegypti tagged with fluorescent sperm. Laboratory reared mosquitoes were then competed against a low generation wild-type colony in a series of laboratory and semi-field mating experiments. While neither food quantity nor larval aquatic environment were found to affect male mating fitness, the transgenic lines consistently outperformed wild-types in laboratory competition assays, an advantage that was not conferred to semi-field tests. CONCLUSIONS: Using a model transgenic system, our results indicate that differences in the experimental conditions of laboratory- and field-based measures of mating success can lead to variation in the perceived performance ability of modified strains if they are only tested in certain environments. While there are many potential sources of variation between laboratory and field lines, laboratory adaptation - which may occur over relatively few generations in this species - may directly impact mating ability depending on the context in which it is measured. We suggest that colony-hybridization with field material can potentially be used to mitigate these effects in a field setting. Release programs utilising mass-produced modified laboratory strains should incorporate comparative assessments of quality in candidate lines.


Asunto(s)
Aedes/fisiología , Animales Modificados Genéticamente , Conducta Sexual Animal , Aedes/genética , Animales , Femenino , Larva/fisiología , Longevidad , Masculino , Reproducción , Espermatozoides/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA