Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Immunol ; 196(5): 2401-9, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26826246

RESUMEN

Given the critical role of mucosal surfaces in susceptibility to infection, it is imperative that effective mucosal responses are induced when developing efficacious vaccines and prevention strategies for infection. Modulating the microbiota in the gastrointestinal (GI) tract through the use of probiotics (PBio) is a safe and well-tolerated approach to enhance mucosal and overall health. We assessed the longitudinal impact of daily treatment with the VSL#3 probiotic on cellular and humoral immunity and inflammation in healthy macaques. PBio therapy resulted in significantly increased frequencies of B cells expressing IgA in the colon and lymph node (LN), likely because of significantly increased LN T follicular helper cell frequencies and LN follicles. Increased frequencies of IL-23(+) APCs in the colon were found post-PBio treatment, which correlated with LN T follicular helper cells. Finally, VSL#3 significantly downmodulated the response of TLR2-, TLR3-, TLR4-, and TLR9-expressing HEK293 cells to stimulation with Pam3CSK4, polyinosinic-polycytidylic acid, LPS, and ODN2006, respectively. These data provide a mechanism for the beneficial impact of PBio on mucosal health and implicates the use of PBio therapy in the context of vaccination or preventative approaches to enhance protection from mucosal infection by improving immune defenses at the mucosal portal of entry.


Asunto(s)
Inmunidad , Microbiota , Membrana Mucosa/inmunología , Membrana Mucosa/microbiología , Animales , Células Presentadoras de Antígenos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Línea Celular , Colon/inmunología , Colon/microbiología , Microbioma Gastrointestinal/inmunología , Humanos , Inmunidad Innata , Inmunidad Mucosa , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Interleucina-23/biosíntesis , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Activación de Linfocitos/inmunología , Macaca , Probióticos/administración & dosificación , Transducción de Señal , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Receptores Toll-Like/metabolismo
2.
Drug Metab Dispos ; 43(2): 284-8, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25488931

RESUMEN

To predict transporter-mediated drug disposition using physiologically based pharmacokinetic models, one approach is to measure transport activity and relate it to protein expression levels in cell lines (overexpressing the transporter) and then scale these to via in vitro to in vivo extrapolation (IVIVE). This approach makes two major assumptions. First, that the expression of the transporter is predominantly in the plasma membrane. Second, that there is a linear correlation between expression level and activity of the transporter protein. The present study was conducted to test these two assumptions. We evaluated two commercially available kits that claimed to separate plasma membrane from other cell membranes. The Qiagen Qproteome kit yielded very little protein in the fraction purported to be the plasma membrane. The Abcam Phase Separation kit enriched the plasma membrane but did not separate it from other intracellular membranes. For the Abcam method, the expression level of organic anion-transporting polypeptides (OATP) 1B1/2B1 and breast cancer resistance protein (BCRP) proteins in all subcellular fractions isolated from cells or human liver tissue tracked that of Na⁺-K⁺ ATPase. Assuming that Na⁺-K⁺ ATPase is predominantly located in the plasma membrane, these data suggest that the transporters measured are also primarily located in the plasma membrane. Using short hairpin RNA, we created clones of cell lines with varying degrees of OATP1B1 or BCRP expression level. In these clones, transport activity of OATP1B1 or BCRP was highly correlated with protein expression level (r² > 0.9). These data support the use of transporter expression level data and activity data from transporter overexpressing cell lines for IVIVE of transporter-mediated disposition of drugs.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Riñón/metabolismo , Hígado/metabolismo , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Transportadores de Anión Orgánico/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/antagonistas & inhibidores , Transportadoras de Casetes de Unión a ATP/genética , Animales , Bencimidazoles/metabolismo , Transporte Biológico , Células CHO , Fraccionamiento Celular , Cromatografía Líquida de Alta Presión , Células Clonales , Cricetulus , Perros , Evaluación Preclínica de Medicamentos , Estradiol/metabolismo , Células HEK293 , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado , Células de Riñón Canino Madin Darby , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Transportadores de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico/genética , Interferencia de ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometría de Masas en Tándem
3.
J Control Release ; 191: 24-33, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24698946

RESUMEN

Synthetic subunit vaccines need to induce CD8(+) cytotoxic T cell (CTL) responses for effective vaccination against intracellular pathogens. Most subunit vaccines primarily generate humoral immune responses, with a weaker than desired CD8(+) cytotoxic T cell response. Here, a neutral, pH-responsive polymer micelle carrier that alters intracellular antigen trafficking was shown to enhance CD8(+) T cell responses with a correlated increase in cytosolic delivery and a decrease in exocytosis. Polymer diblock carriers consisted of a N-(2-hydroxypropyl) methacrylamide corona block with pendent pyridyl disulfide groups for reversible conjugation of thiolated ovalbumin, and a tercopolymer ampholytic core-forming block composed of propylacrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The diblock copolymers self-assembled into 25-30nm diameter micellar nanoparticles. Conjugation of ovalbumin to the micelles significantly enhanced antigen cross-presentation in vitro relative to free ovalbumin, an unconjugated physical mixture of ovalbumin and polymer, and a non-pH-responsive micelle-ovalbumin control. Mechanistic studies in a murine dendritic cell line (DC 2.4) demonstrated micelle-mediated enhancements in intracellular antigen retention and cytosolic antigen accumulation. Approximately 90% of initially internalized ovalbumin-conjugated micelles were retained in cells after 1.5h, compared to only ~40% for controls. Furthermore, cells dosed with conjugates displayed 67-fold higher cytosolic antigen levels relative to soluble ovalbumin 4h post uptake. Subcutaneous immunization of mice with ovalbumin-polymer conjugates significantly enhanced antigen-specific CD8(+) T cell responses (0.4% IFN-γ(+) of CD8(+)) compared to immunization with soluble protein, ovalbumin and polymer mixture, and the control micelle without endosome-releasing activity. Additionally, pH-responsive carrier facilitated antigen delivery to antigen presenting cells in the draining lymph nodes. As early as 90min post injection, ova-micelle conjugates were associated with 28% and 55% of dendritic cells and macrophages, respectively. After 24h, conjugates preferentially associated with dendritic cells, affording 30-, 3-, and 3-fold enhancements in uptake relative to free protein, physical mixture, and the non-pH-responsive conjugate controls, respectively. These results demonstrate the potential of pH-responsive polymeric micelles for use in vaccine applications that rely on CD8(+) T cell activation.


Asunto(s)
Antígenos , Células Dendríticas/efectos de los fármacos , Portadores de Fármacos , Endosomas/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Ovalbúmina/farmacología , Polímeros/química , Linfocitos T Citotóxicos/efectos de los fármacos , Animales , Línea Celular , Química Farmacéutica , Preparaciones de Acción Retardada , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Endosomas/inmunología , Endosomas/metabolismo , Femenino , Concentración de Iones de Hidrógeno , Inmunización , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Micelas , Nanopartículas , Ovalbúmina/química , Ovalbúmina/inmunología , Tamaño de la Partícula , Transporte de Proteínas , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Tecnología Farmacéutica/métodos , Factores de Tiempo , Vacunas de Subunidad/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA