Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Neuroendocrinology ; 113(12): 1262-1282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36075192

RESUMEN

INTRODUCTION: Flame retardants (FRs) are common bodily and environmental pollutants, creating concern about their potential toxicity. We and others have found that the commercial mixture FireMaster® 550 (FM 550) or its individual brominated (BFR) and organophosphate ester (OPFR) components are potential developmental neurotoxicants. Using Wistar rats, we previously reported that developmental exposure to FM 550 or its component classes produced sex- and compound-specific effects on adult socioemotional behaviors. The underlying mechanisms driving the behavioral phenotypes are unknown. METHODS: To further mechanistic understanding, here we conducted transcriptomics in parallel with a novel lipidomics approach using cortical tissues from newborn siblings of the rats in the published behavioral study. Inclusion of lipid composition is significant because it is rarely examined in developmental neurotoxicity studies. Pups were gestationally exposed via oral dosing to the dam to FM 550 or the BFR or OPFR components at environmentally relevant doses. RESULTS: The neonatal cortex was highly sexually dimorphic in lipid and transcriptome composition, and males were more significantly impacted by FR exposure. Multiple adverse modes of action for the BFRs and OPFRs on neurodevelopment were identified, with the OPFRs being more disruptive than the BFRs via multiple mechanisms including dysregulation of mitochondrial function and disruption of cholinergic and glutamatergic systems. Disrupted mitochondrial function by environmental factors has been linked to a higher risk of autism spectrum disorders and neurodegenerative disorders. Impacted lipid classes included ceramides, sphingomyelins, and triacylglycerides. Robust ceramide upregulation in the OPFR females could suggest a heightened risk of brain metabolic disease. CONCLUSIONS: This study reveals multiple mechanisms by which the components of a common FR mixture are developmentally neurotoxic and that the OPFRs may be the compounds of greatest concern.


Asunto(s)
Retardadores de Llama , Bifenilos Polibrominados , Masculino , Femenino , Ratas , Animales , Ratas Wistar , Organofosfatos/toxicidad , Retardadores de Llama/toxicidad , Lípidos
2.
Environ Health ; 21(Suppl 1): 120, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635752

RESUMEN

BACKGROUND: Hazard identification, risk assessment, regulatory, and policy activity are usually conducted on a chemical-by-chemical basis. Grouping chemicals into categories or classes is an underutilized approach that could make risk assessment and management of chemicals more efficient for regulators. OBJECTIVE AND METHODS: While there are some available methods and regulatory frameworks that include the grouping of chemicals (e.g.,same molecular mechanism or similar chemical structure) there has not been a comprehensive evaluation of these different approaches nor a recommended course of action to better consider chemical classes in decision-making. This manuscript: 1) reviews current national and international approaches to grouping; 2) describes how groups could be defined based on the decision context (e.g., hazard/risk assessment, restrictions, prioritization, product development) and scientific considerations (e.g., intrinsic physical-chemical properties); 3) discusses advantages of developing a decision tree approach for grouping; 4) uses ortho-phthalates as a case study to identify and organize frameworks that could be used across agencies; and 5) discusses opportunities to advance the class concept within various regulatory decision-making scenarios. RESULTS: Structural similarity was the most common grouping approach for risk assessment among regulatory agencies (national and state level) and non-regulatory organizations, albeit with some variations in its definition. Toxicity to the same target organ or to the same biological function was also used in a few cases. The phthalates case study showed that a decision tree approach for grouping should include questions about uses regulated by other agencies to encourage more efficient, coherent, and protective chemical risk management. DISCUSSION AND CONCLUSION: Our evaluation of how classes of chemicals are defined and used identified commonalities and differences based on regulatory frameworks, risk assessments, and business strategies. We also identified that using a class-based approach could result in a more efficient process to reduce exposures to multiple hazardous chemicals and, ultimately, reduce health risks. We concluded that, in the absence of a prescribed method, a decision tree approach could facilitate the selection of chemicals belonging to a pre-defined class (e.g., chemicals with endocrine-disrupting activity; organohalogen flame retardants [OFR]) based on the decision-making context (e.g., regulatory risk management).


Asunto(s)
Sustancias Peligrosas , Humanos , Sustancias Peligrosas/toxicidad , Medición de Riesgo/métodos
3.
Environ Health ; 21(Suppl 1): 132, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635734

RESUMEN

The manufacture and production of industrial chemicals continues to increase, with hundreds of thousands of chemicals and chemical mixtures used worldwide, leading to widespread population exposures and resultant health impacts. Low-wealth communities and communities of color often bear disproportionate burdens of exposure and impact; all compounded by regulatory delays to the detriment of public health. Multiple authoritative bodies and scientific consensus groups have called for actions to prevent harmful exposures via improved policy approaches. We worked across multiple disciplines to develop consensus recommendations for health-protective, scientific approaches to reduce harmful chemical exposures, which can be applied to current US policies governing industrial chemicals and environmental pollutants. This consensus identifies five principles and scientific recommendations for improving how agencies like the US Environmental Protection Agency (EPA) approach and conduct hazard and risk assessment and risk management analyses: (1) the financial burden of data generation for any given chemical on (or to be introduced to) the market should be on the chemical producers that benefit from their production and use; (2) lack of data does not equate to lack of hazard, exposure, or risk; (3) populations at greater risk, including those that are more susceptible or more highly exposed, must be better identified and protected to account for their real-world risks; (4) hazard and risk assessments should not assume existence of a "safe" or "no-risk" level of chemical exposure in the diverse general population; and (5) hazard and risk assessments must evaluate and account for financial conflicts of interest in the body of evidence. While many of these recommendations focus specifically on the EPA, they are general principles for environmental health that could be adopted by any agency or entity engaged in exposure, hazard, and risk assessment. We also detail recommendations for four priority areas in companion papers (exposure assessment methods, human variability assessment, methods for quantifying non-cancer health outcomes, and a framework for defining chemical classes). These recommendations constitute key steps for improved evidence-based environmental health decision-making and public health protection.


Asunto(s)
Contaminantes Ambientales , Humanos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/prevención & control , Salud Ambiental , Contaminantes Ambientales/análisis , Salud Pública , Medición de Riesgo , Conferencias de Consenso como Asunto
4.
Reproduction ; 162(5): F111-F130, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33929341

RESUMEN

We are all living with hundreds of anthropogenic chemicals in our bodies every day, a situation that threatens the reproductive health of present and future generations. This review focuses on endocrine-disrupting compounds (EDCs), both naturally occurring and man-made, and summarizes how they interfere with the neuroendocrine system to adversely impact pregnancy outcomes, semen quality, age at puberty, and other aspects of human reproductive health. While obvious malformations of the genitals and other reproductive organs are a clear sign of adverse reproductive health outcomes and injury to brain sexual differentiation, the hypothalamic-pituitary-gonadal (HPG) axis can be much more difficult to discern, particularly in humans. It is well-established that, over the course of development, gonadal hormones shape the vertebrate brain such that sex-specific reproductive physiology and behaviors emerge. Decades of work in neuroendocrinology have elucidated many of the discrete and often very short developmental windows across pre- and postnatal development in which this occurs. This has allowed toxicologists to probe how EDC exposures in these critical windows can permanently alter the structure and function of the HPG axis. This review includes a discussion of key EDC principles including how latency between exposure and the emergence of consequential health effects can be long, along with a summary of the most common and less well-understood EDC modes of action. Extensive examples of how EDCs are impacting human reproductive health, and evidence that they have the potential for multi-generational physiological and behavioral effects are also provided.


Asunto(s)
Disruptores Endocrinos , Análisis de Semen , Disruptores Endocrinos/toxicidad , Femenino , Humanos , Masculino , Sistemas Neurosecretores , Embarazo , Pubertad , Reproducción
5.
Horm Behav ; 134: 105019, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34182292

RESUMEN

One of the most widely used flame retardant (FR) mixtures in household products is Firemaster 550 (FM 550). FM 550 leaches from items such as foam-based furniture and infant products, resulting in contamination of the household environment and biota. Previous studies indicate sex-specific behavioral deficits in rodents and zebrafish in response to developmental FM 550 exposure. These deficits include impacts on social and attachment behaviors in a prosocial rodent: the prairie vole (Microtus ochrogaster). The prairie vole is a laboratory-acclimated rodent that exhibits spontaneous attachment behaviors including pair bonding. Here we extend previous work by addressing how developmental exposure to FM 550 impacts pair bonding strength via an extended-time partner preference test, as well as neuron electrophysiological properties in a region implicated in pair bond behavior, the nucleus accumbens (NAcc) core. Dams were exposed to vehicle or 1000 µg of FM 550 via subcutaneous injections throughout gestation, and female and male pups were directly exposed beginning the day after birth until weaning. Pair bond behavior of adult female and male offspring was assessed using a three hour-long partner preference test. Afterwards, acute brain slices of the NAcc core were produced and medium spiny neuron electrophysiological attributes recorded via whole cell patch-clamp. Behavioral impacts were sex-specific. Partner preference behavior was increased in exposed females but decreased in exposed males. Electrophysiological impacts were similar between sexes and specific to attributes related to input resistance. Input resistance was decreased in neurons recorded from both sexes exposed to FM 550 compared to vehicle. This study supports the hypothesis that developmental exposure to FM 550 impacts attachment behaviors and demonstrates a novel FM 550 effect on neural electrophysiology.


Asunto(s)
Pradera , Núcleo Accumbens , Animales , Arvicolinae , Electrofisiología , Femenino , Masculino , Neuronas , Organofosfatos , Apareamiento , Bifenilos Polibrominados , Embarazo , Conducta Social , Pez Cebra
6.
Am J Public Health ; 111(4): 687-695, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33600256

RESUMEN

Robust data from longitudinal birth cohort studies and experimental studies of perinatally exposed animals indicate that exposure to ortho-phthalates can impair brain development and increase risks for learning, attention, and behavioral disorders in childhood. This growing body of evidence, along with known adverse effects on male reproductive tract development, calls for immediate action.Exposures are ubiquitous; the majority of people are exposed to multiple ortho-phthalates simultaneously. We thus recommend that a class approach be used in assessing health impacts as has been done with other chemical classes. We propose critically needed policy reforms to eliminate ortho-phthalates from products that lead to exposure of pregnant women, women of reproductive age, infants, and children. Specific attention should be focused on reducing exposures among socially vulnerable populations such as communities of color, who frequently experience higher exposures.Ortho-phthalates are used in a vast array of products and elimination will thus necessitate a multipronged regulatory approach at federal and state levels. The fact that manufacturers and retailers have already voluntarily removed ortho-phthalates from a wide range of products indicates that this goal is feasible.


Asunto(s)
Encéfalo/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Ácidos Ftálicos , Formulación de Políticas , Efectos Tardíos de la Exposición Prenatal , Reproducción/efectos de los fármacos , Animales , Niño , Desarrollo Infantil/efectos de los fármacos , Femenino , Regulación Gubernamental , Humanos , Lactante , Estudios Longitudinales , Masculino , Ácidos Ftálicos/efectos adversos , Ácidos Ftálicos/toxicidad , Embarazo
7.
Horm Behav ; 120: 104694, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31978389

RESUMEN

The sex steroid hormone 17ß-estradiol (estradiol) regulates animal behavior as both a non-rapid hormone signal and as a rapid-acting neuromodulator. By practical necessity, estradiol's divergent temporal actions on rodent behavior are typically studied singularly and in one sex. We hypothesized that estradiol simultaneously acts through both temporal mechanisms to sex-specifically modulate a single behavior; and furthermore, that estradiol action in one temporal domain may regulate action in another. To test this hypothesis, we utilized one of the most robust rat behaviors exhibiting sex differences and estradiol-responsiveness, voluntary wheel running. Adult female and male rats were gonadectomized and exposed to daily repeated estradiol benzoate (EB) injections. Estradiol-sensitive running behavior was continually assessed in both the rapid and non-rapid temporal domains. We found that in female rats, estradiol rapidly decreased voluntary wheel running, but only after prior daily EB injections, supporting the hypothesis that non-rapid estradiol action influences rapid estradiol actions. Males exhibited a similar but less robust response, demonstrating sex-responsiveness. This rapid estradiol-induced decrease in running contrasted to non-rapid estradiol action which overall increased running in both sexes, revealing a bidirectional nature of estradiol's temporal influence. Non-rapid estradiol action also demonstrated sex-responsiveness, as a higher dose of EB was required to induce increased running in males compared to females. These findings indicate that estradiol rapidly, non-rapidly, and bidirectionally modulates wheel running in a sex-responsive manner, and that rapid estradiol action is modulated by non-rapid estradiol action. Overall, these data illustrate estradiol as a pleiotropic sex-responsive neuromodulator of a single behavior across temporal domains.


Asunto(s)
Conducta Animal/efectos de los fármacos , Estradiol/farmacología , Motivación/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Animales , Estradiol/análogos & derivados , Femenino , Masculino , Ratas , Ratas Sprague-Dawley , Carrera/fisiología , Caracteres Sexuales , Factores de Tiempo
8.
Horm Behav ; 126: 104853, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32949556

RESUMEN

Firemaster 550 (FM550) is a flame retardant (FR) mixture that has become one of the most commonly used FRs in household items such as foam-based furniture and baby products. Because this mixture readily leaches from products, contamination of the environment and human tissues is widespread. Prior work by us and others has reported sex-specific behavioral deficits in rodents and zebrafish following early life exposure. In an effort to understand the mechanisms by which these behavioral effects occur, here we explored the effects of its constituents on behavioral outcomes previously shown to be altered by developmental FM550 exposure. The FM550 commercial mixture is composed of two brominated compounds (BFR) and two organophosphate compounds (OPFRs) at almost equivalent proportions. Both the BFR and the OPFR components are differentially metabolized and structurally distinct, but similar to known neurotoxicants. Here we examined adult Wistar rat offspring socioemotional behaviors following perinatal exposure (oral, to the dam) to vehicle, 2000 µg/day FM550, 1000 µg/day BFR or 1000 µg/day OPFR from gestation day 0 to weaning. Beginning on postnatal day 65 offspring from all groups were subjected to a series of behavioral tasks including open field, elevated plus maze, marble burying, social interaction tests, and running wheel. Effects were exposure-, sex- and task-specific, with BFR exposure resulting in the most consistent behavioral deficits. Overall, exposed females showed more deficits compared to males across all dose groups and tasks. These findings help elucidate how different classes of flame retardants, independently and as a mixture, contribute to sex-specific behavioral effects of exposure.


Asunto(s)
Conducta Animal/efectos de los fármacos , Emociones/efectos de los fármacos , Retardadores de Llama/toxicidad , Exposición Materna/efectos adversos , Organofosfatos/toxicidad , Bifenilos Polibrominados/toxicidad , Animales , Animales Recién Nacidos , Disruptores Endocrinos/toxicidad , Femenino , Hidrocarburos Bromados/toxicidad , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Efectos Tardíos de la Exposición Prenatal/psicología , Ratas , Ratas Wistar , Caracteres Sexuales , Conducta Social
9.
Int J Mol Sci ; 21(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272586

RESUMEN

Flame retardants (FRs) are used in a variety of common items from furniture to carpet to electronics to reduce flammability and combustion, but the potential toxicity of these compounds is raising health concerns globally. Organophosphate FRs (OPFRs) are becoming more prevalent as older, brominated FRs are phased out, but the toxicity of these compounds, and the FR mixtures that contain them, is poorly understood. Work in a variety of in vitro model systems has suggested that FRs may induce metabolic reprogramming such that bone density is compromised at the expense of increasing adiposity. To address this hypothesis, the present studies maternally exposed Wistar rat dams orally across gestation and lactation to 1000 µg daily of the FR mixture Firemaster 550 (FM 550) which contains a mixture of brominated FRs and OPFRs. At six months of age, the offspring of both sexes were examined for evidence of compromised bone composition. Bone density, composition, and marrow were all significantly affected, but only in males. The fact that the phenotype was observed months after exposure suggests that FM 550 altered some fundamental aspect of mesenchymal stem cell reprogramming. The severity of the phenotype and the human-relevance of the dose employed, affirm this is an adverse outcome meriting further exploration.


Asunto(s)
Huesos/efectos de los fármacos , Retardadores de Llama/efectos adversos , Organofosfatos/efectos adversos , Bifenilos Polibrominados/efectos adversos , Animales , Reprogramación Celular/efectos de los fármacos , Polvo/análisis , Monitoreo del Ambiente/métodos , Femenino , Halogenación/efectos de los fármacos , Lactancia/efectos de los fármacos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratas , Ratas Wistar
10.
J Neurophysiol ; 119(4): 1576-1588, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29361665

RESUMEN

Medium spiny neurons (MSNs) in the nucleus accumbens have long been implicated in the neurobiological mechanisms that underlie numerous social and motivated behaviors as studied in rodents such as rats. Recently, the prairie vole has emerged as an important model animal for studying social behaviors, particularly regarding monogamy because of its ability to form pair bonds. However, to our knowledge, no study has assessed intrinsic vole MSN electrophysiological properties or tested how these properties vary with the strength of the pair bond between partnered voles. Here we performed whole cell patch-clamp recordings of MSNs in acute brain slices of the nucleus accumbens core (NAc) of adult male voles exhibiting strong and weak preferences for their respective partnered females. We first document vole MSN electrophysiological properties and provide comparison to rat MSNs. Vole MSNs demonstrated many canonical electrophysiological attributes shared across species but exhibited notable differences in excitability compared with rat MSNs. Second, we assessed male vole partner preference behavior and tested whether MSN electrophysiological properties varied with partner preference strength. Male vole partner preference showed extensive variability. We found that decreases in miniature excitatory postsynaptic current amplitude and the slope of the evoked action potential firing rate to depolarizing current injection weakly associated with increased preference for the partnered female. This suggests that excitatory synaptic strength and neuronal excitability may be decreased in MSNs in males exhibiting stronger preference for a partnered female. Overall, these data provide extensive documentation of MSN electrophysiological characteristics and their relationship to social behavior in the prairie vole. NEW & NOTEWORTHY This research represents the first assessment of prairie vole nucleus accumbens core medium spiny neuron intrinsic electrophysiological properties and probes the relationship between cellular excitability and social behavior.


Asunto(s)
Potenciales de Acción/fisiología , Arvicolinae/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Preferencia en el Apareamiento Animal/fisiología , Neuronas/fisiología , Núcleo Accumbens/fisiología , Conducta Social , Animales , Masculino , Técnicas de Placa-Clamp
11.
Horm Behav ; 84: 121-6, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27373758

RESUMEN

Concerns have been raised regarding the potential for endocrine disrupting compounds (EDCs) to alter brain development and behavior. Developmental exposure to bisphenol A (BPA), a ubiquitous EDC, has been linked to altered sociosexual and mood-related behaviors in various animal models and children but effects are inconsistent across laboratories and animal models creating confusion about potential risk in humans. Exposure to endocrine active diets, such as soy, which is rich in phytoestrogens, may contribute to this variability. Here, we tested the individual and combined effects of low dose oral BPA and soy diet or the individual isoflavone genistein (GEN; administered as the aglycone genistin (GIN)) on rat sociosexual behaviors with the hypothesis that soy would obfuscate any BPA-related effects. Social and activity levels were unchanged by developmental exposure to BPA but soy diet had sex specific effects including suppressed novelty preference, and open field exploration in females. The data presented here reinforce that environmental factors, including anthropogenic chemical exposure and hormone active diets, can shape complex behaviors and even reverse expected sex differences.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Disruptores Endocrinos/farmacología , Isoflavonas/farmacología , Fenoles/farmacología , Fitoestrógenos/farmacología , Conducta Sexual Animal/efectos de los fármacos , Conducta Social , Animales , Conducta Exploratoria/efectos de los fármacos , Femenino , Masculino , Ratas
12.
Gen Comp Endocrinol ; 238: 39-46, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27102938

RESUMEN

During development, microglia, the resident immune cells of the brain, play an important role in synaptic organization. Microglial colonization of the developing brain is sexually dimorphic in some regions, including nuclei critical for the coordination of social behavior, suggesting steroid hormones have an influencing role, particularly estrogen. By extension, microglial colonization may be vulnerable to endocrine disruption. Concerns have been raised regarding the potential for endocrine disrupting compounds (EDCs) to alter brain development and behavior. Developmental exposure to Bisphenol A (BPA), a ubiquitous EDC, has been associated with altered sociosexual and mood-related behaviors in various animal models and children. Through a comparison of the promiscuous Wistar rat (Rattus norvegicus) and the socially monogamous prairie vole (Microtus ochrogaster), we are the first to observe that developmental exposure to the synthetic estrogen ethinyl estradiol (EE) or BPA alters the sex-specific colonization of the hippocampus and amygdala by microglia.


Asunto(s)
Encéfalo/citología , Disruptores Endocrinos/toxicidad , Microglía/metabolismo , Caracteres Sexuales , Conducta Social , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/efectos de los fármacos , Animales , Animales Recién Nacidos , Arvicolinae , Compuestos de Bencidrilo/toxicidad , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Giro Dentado/citología , Giro Dentado/efectos de los fármacos , Femenino , Masculino , Microglía/efectos de los fármacos , Fenoles/toxicidad , Ratas Wistar , Corteza Somatosensorial/citología , Corteza Somatosensorial/efectos de los fármacos
13.
Reproduction ; 147(4): 537-54, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24352099

RESUMEN

Perinatal life is a critical window for sexually dimorphic brain organization, and profoundly influenced by steroid hormones. Exposure to endocrine-disrupting compounds may disrupt this process, resulting in compromised reproductive physiology and behavior. To test the hypothesis that neonatal bisphenol A (BPA) exposure can alter sex-specific postnatal Esr2 (Erß) expression in brain regions fundamental to sociosexual behavior, we mapped Esr2 mRNA levels in the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), paraventricular nucleus (PVN), anterior portion of the medial amygdaloid nucleus (MeA), super optic nucleus, suprachiasmatic nucleus, and lateral habenula across postnatal days (PNDs) 0-19. Next, rat pups of both sexes were subcutaneously injected with 10 µg estradiol benzoate (EB), 50 µg/kg BPA (LBPA), or 50 mg/kg BPA (HBPA) over the first 3 days of life and Esr2 levels were quantified in each region of interest (ROI) on PNDs 4 and 10. EB exposure decreased Esr2 signal in most female ROIs and in the male PVN. In the BNSTp, Esr2 expression decreased in LBPA males and HBPA females on PND 10, thereby reversing the sex difference in expression. In the PVN, Esr2 mRNA levels were elevated in LBPA females, also resulting in a reversal of sexually dimorphic expression. In the MeA, BPA decreased Esr2 expression on PND 4. Collectively, these data demonstrate that region- and sex-specific Esr2 expression is vulnerable to neonatal BPA exposure in regions of the developing brain critical to sociosexual behavior in rat.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Compuestos de Bencidrilo/toxicidad , Receptor beta de Estrógeno/genética , Hipotálamo/efectos de los fármacos , Fenoles/toxicidad , Amígdala del Cerebelo/crecimiento & desarrollo , Amígdala del Cerebelo/metabolismo , Animales , Animales Recién Nacidos , Conducta Animal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estradiol/análogos & derivados , Estradiol/farmacología , Receptor beta de Estrógeno/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Masculino , Ratas , Ratas Long-Evans , Factores Sexuales , Conducta Sexual Animal/efectos de los fármacos , Conducta Social
14.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405991

RESUMEN

Prairie voles (Microtus ochrogaster) and Syrian, or golden, hamsters (Mesocricetus auratus) are closely related to mice (Mus musculus) and rats (Rattus norvegicus, for example) and are commonly used in studies of social behavior including social interaction, social memory, and aggression. The CA2 region of the hippocampus is known to play a key role in social memory and aggression in mice and responds to social stimuli in rats, likely owing to its high expression of oxytocin and vasopressin 1b receptors. However, CA2 has yet to be identified and characterized in hamsters or voles. In this study, we sought to determine whether CA2 could be identified molecularly in vole and hamster. To do this, we used immunofluorescence with primary antibodies raised against known molecular markers of CA2 in mice and rats to stain hippocampal sections from voles and hamsters in parallel with those from mice. Here, we report that, like in mouse and rat, staining for many CA2 proteins in vole and hamster hippocampus reveals a population of neurons that express regulator of G protein signaling 14 (RGS14), Purkinje cell protein 4 (PCP4) and striatal-enriched protein tyrosine phosphatase (STEP), which together delineate the borders with CA3 and CA1. These cells were located at the distal end of the mossy fiber projections, marked by the presence of Zinc Transporter 3 (ZnT-3) and calbindin in all three species. In addition to staining the mossy fibers, calbindin also labeled a layer of CA1 pyramidal cells in mouse and hamster but not in vole. However, Wolframin ER transmembrane glycoprotein (WFS1) immunofluorescence, which marks all CA1 neurons, was present in all three species and abutted the distal end of CA2, marked by RGS14 immunofluorescence. Staining for two stress hormone receptors-the glucocorticoid (GR) and mineralocorticoid (MR) receptors-was also similar in all three species, with GR staining found primarily in CA1 and MR staining enriched in CA2. Interestingly, although perineuronal nets (PNNs) are known to surround CA2 cells in mouse and rat, we found that staining for PNNs differed across species in that both CA2 and CA3 showed staining in voles and primarily CA3 in hamsters with only some neurons in proximal CA2 showing staining. These results demonstrate that, like in mouse, CA2 in voles and hamsters can be molecularly distinguished from neighboring CA1 and CA3 areas, but PNN staining is less useful for identifying CA2 in the latter two species. These findings reveal commonalities across species in molecular profile of CA2, which will facilitate future studies of CA2 in these species. Yet to be determined is how differences in PNNs might relate to differences in social behavior across species.

15.
J Comp Neurol ; 532(3): e25603, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38497661

RESUMEN

Prairie voles (Microtus ochrogaster) and Syrian, or golden, hamsters (Mesocricetus auratus) are closely related to mice (Mus musculus) and are commonly used in studies of social behavior including social interaction, social memory, and aggression. Hippocampal area CA2 is known to play a key role in these behaviors in mice and responds to social stimuli in rats, but CA2 has yet to be characterized in hamsters or voles, which are also used in studies of social behaviors. Here, we used immunofluorescence to determine whether CA2 could be molecularly identified in tissue from voles and hamsters. We found that  staining for many CA2 markers was similar in these three species, with labeling seen in neurons at the distal end of the mossy fibers . In contrast, although perineuronal nets (PNNs) surround CA2 cells in mice, PNN staining differed across species. In voles, both CA2 and CA3 were labeled, whereas in hamsters, labeling was seen primarily in CA3. These results demonstrate that CA2 can be molecularly distinguished from neighboring CA1 and CA3 areas in voles and hamsters with several antibodies commonly used in mice. However, PNN staining is not useful for identifying CA2 in voles or hamsters, suggestive of differing roles for either PNNs or for the hippocampal subregions in social behavior. These findings reveal commonalities across species in the molecular profile of CA2 and should facilitate future studies of CA2 in these species.


Asunto(s)
Encéfalo , Conducta Social , Cricetinae , Ratones , Ratas , Animales , Anticuerpos , Arvicolinae , Hipocampo
17.
J Biochem Mol Toxicol ; 27(2): 124-36, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23139171

RESUMEN

Firemaster® 550 (FM 550), a fire-retardant mixture used in foam-based products, was recently identified as a common contaminant in household dust. The chemical structures of its principle components suggest they have endocrine disrupting activity, but nothing is known about their physiological effects at environmentally relevant exposure levels. The goal of this exploratory study was to evaluate accumulation, metabolism and endocrine disrupting effects of FM 550 in rats exposed to 100 or 1000 µg/day across gestation and lactation. FM 550 components accumulated in tissues of exposed dams and offspring and induced phenotypic hallmarks associated with metabolic syndrome in the offspring. Effects included increased serum thyroxine levels and reduced hepatic carboxylesterease activity in dams, and advanced female puberty, weight gain, male cardiac hypertrophy, and altered exploratory behaviors in offspring. Results of this study are the first to implicate FM 550 as an endocrine disruptor and an obesogen at environmentally relevant levels.


Asunto(s)
Sistema Endocrino/metabolismo , Retardadores de Llama/efectos adversos , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/sangre , Tiroxina/sangre , Animales , Cardiomegalia/sangre , Cardiomegalia/inducido químicamente , Cardiomegalia/patología , Sistema Endocrino/patología , Sistema Endocrino/fisiología , Femenino , Masculino , Obesidad/sangre , Obesidad/inducido químicamente , Obesidad/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Ratas , Ratas Wistar
18.
Adv Exp Med Biol ; 784: 455-79, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23550019

RESUMEN

Sex steroid hormones, most notably estradiol, play a pivotal role in the sex-specific organization and function of the kisspeptin system. Endocrine--disrupting compounds are anthropogenic or naturally occurring compounds that interact with steroid hormone signaling. Thus, these compounds have the potential to disrupt the sexually dimorphic ontogeny and function of kisspeptin signaling pathways, resulting in adverse effects on neuroendocrine physiology. This chapter reviews the small but growing body of evidence for endocrine disruption of the kisspeptin system by the exogenous estrogenic compounds bisphenol A, polychlorinated biphenyl mixtures, and the phytoestrogen genistein. Disruption is region, sex, and compound specific, and associated with shifts in the timing of pubertal onset, irregular estrous cycles, and altered sociosexual behavior. These effects highlight that disruption of kisspeptin signaling pathways could have wide ranging effects across multiple organ systems, and potentially underlies a suite of adverse human health trends including precocious female puberty, idiopathic infertility, and metabolic syndrome.


Asunto(s)
Estradiol/metabolismo , Genisteína/efectos adversos , Infertilidad/metabolismo , Kisspeptinas/metabolismo , Síndrome Metabólico/metabolismo , Fitoestrógenos/efectos adversos , Pubertad Precoz/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Compuestos de Bencidrilo/efectos adversos , Femenino , Humanos , Infertilidad/inducido químicamente , Infertilidad/patología , Ciclo Menstrual/efectos de los fármacos , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/patología , Sistemas Neurosecretores/metabolismo , Sistemas Neurosecretores/patología , Fenoles/efectos adversos , Pubertad Precoz/inducido químicamente , Pubertad Precoz/patología , Conducta Sexual/efectos de los fármacos
19.
Neurotoxicology ; 99: 104-114, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783313

RESUMEN

Organophosphate flame retardant (OPFR) contamination is ubiquitous and bio-monitoring studies have shown that human exposure is widespread and may be unavoidable. OPFRs bear structural similarities to known neurotoxicants such as organophosphate insecticides and have been shown to have both endocrine disrupting and developmental neurotoxic effects. The perinatal period in rodents represents a critical period in the organization of the developing nervous system and insults during this time can impart profound changes on the trajectory of neural development and function, lasting into adulthood. Adult hippocampal neurogenesis (AHN) facilitates dentate gyrus function and broader hippocampal circuit activity in adults; however, the neurogenic potential of this process in adulthood is vulnerable to disruption by exogenous factors during early life. We sought to assess the impact of OPFRs on AHN in offspring of dams exposed during gestation and lactation. Results indicate that developmental OPFR exposure has significant, sex specific impacts on multiple markers of AHN in the dentate gyrus of rats. In males, OPFR exposure significantly reduced the number of neural progenitors the number of new/immature neurons and reduced dentate gyrus volume. In females, exposure increased the number of neural progenitors, decreased the number of new/immature neurons, but had no significant effect on dentate gyrus volume. These results further elucidate the developmental neurotoxic properties of OPFRs, emphasize the long-term impact of early life OPFR exposure on neural processes, and highlight the importance of including sex as a biological variable in neurotoxicology research.


Asunto(s)
Retardadores de Llama , Organofosfatos , Embarazo , Femenino , Masculino , Humanos , Ratas , Animales , Organofosfatos/toxicidad , Ratas Wistar , Retardadores de Llama/toxicidad , Hipocampo , Neurogénesis
20.
Toxicol Sci ; 195(1): 103-122, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37399109

RESUMEN

Toxicogenomics is a critical area of inquiry for hazard identification and to identify both mechanisms of action and potential markers of exposure to toxic compounds. However, data generated by these experiments are highly dimensional and present challenges to standard statistical approaches, requiring strict correction for multiple comparisons. This stringency often fails to detect meaningful changes to low expression genes and/or eliminate genes with small but consistent changes particularly in tissues where slight changes in expression can have important functional differences, such as brain. Machine learning offers an alternative analytical approach for "omics" data that effectively sidesteps the challenges of analyzing highly dimensional data. Using 3 rat RNA transcriptome sets, we utilized an ensemble machine learning approach to predict developmental exposure to a mixture of organophosphate esters (OPEs) in brain (newborn cortex and day 10 hippocampus) and late gestation placenta of male and female rats, and identified genes that informed predictor performance. OPE exposure had sex specific effects on hippocampal transcriptome, and significantly impacted genes associated with mitochondrial transcriptional regulation and cation transport in females, including voltage-gated potassium and calcium channels and subunits. To establish if this holds for other tissues, RNAseq data from cortex and placenta, both previously published and analyzed via a more traditional pipeline, were reanalyzed with the ensemble machine learning methodology. Significant enrichment for pathways of oxidative phosphorylation and electron transport chain was found, suggesting a transcriptomic signature of OPE exposure impacting mitochondrial metabolism across tissue types and developmental epoch. Here we show how machine learning can complement more traditional analytical approaches to identify vulnerable "signature" pathways disrupted by chemical exposures and biomarkers of exposure.


Asunto(s)
Retardadores de Llama , Transcriptoma , Masculino , Embarazo , Femenino , Animales , Ratas , Retardadores de Llama/toxicidad , Plastificantes , Placenta/metabolismo , Organofosfatos/toxicidad , Encéfalo/metabolismo , Ésteres
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA