Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Res ; 235: 116573, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37437865

RESUMEN

Cancer is characterized by uncontrolled cell growth, disrupted regulatory pathways, and the accumulation of genetic mutations. These mutations across different types of cancer lead to disruptions in signaling pathways and alterations in protein expression related to cellular growth and proliferation. This review highlights the AKT signaling cascade and the retinoblastoma protein (pRb) regulating cascade as promising for novel nanotheranostic interventions. Through synergizing state-of-the-art gene editing tools like the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system with nanomaterials and targeting AKT, there is potential to enhance cancer diagnostics significantly. Furthermore, the integration of modified CAR-T cells into multifunctional nanodelivery systems offers a promising approach for targeted cancer inhibition, including the eradication of cancer stem cells (CSCs). Within the context of highly aggressive and metastatic Triple-negative Breast Cancer (TNBC), this review specifically focuses on devising innovative nanotheranostics. For both pre-clinical and post-clinical TNBC detection, the utilization of the CRISPR-Cas system, guided by RNA (gRNA) and coupled with a fluorescent reporter specifically designed to detect TNBC's mutated sequence, could be promising. Additionally, a cutting-edge approach involving the engineering of TNBC-specific iCAR and syn-Notch CAR T-cells, combined with the co-delivery of a hybrid polymeric nano-liposome encapsulating a conditionally replicative adenoviral vector (CRAdV) against CSCs, could present an intriguing intervention strategy. This review thus paves the way for exciting advancements in the field of nanotheranostics for the treatment of TNBC and beyond.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Edición Génica , Linfocitos T/metabolismo
2.
Nutr Cancer ; 74(4): 1497-1510, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34278888

RESUMEN

In the present study, we have explored the prognostic value of HuR gene as well as protein in breast cancers. Furthermore, we have also investigated the HuR therapeutic relevance in TNBCs, which is an aggressive breast cancer subtype. Using an online meta-analysis tool, we found that HuR protein overexpression positively correlates with reduced overall survival of TNBC patients (p = 0.028). Furthermore, we demonstrated that the TNBC breast cancer cell lines i.e., MDA-MB-231 and MDA-MB-468 are good model systems to study HuR protein, as they both exhibit a significant amount of cytoplasmic HuR (active form). Quercetin treatment significantly inhibited the cytoplasmic HuR in both TNBC cell lines. By using specific HuR siRNA, we established that quercetin-mediated inhibition of adhesion and migration of TNBC cells is dependent on HuR. Upon analyzing adhesion proteins i.e., ß-catenin and CD44, we found that quercetin mediated effect on TNBC adhesion and migration was through the HuR-ß-catenin axis and CD44, independently. Overall, the present results demonstrate that elevated HuR levels are associated with TNBC progression and relapse, and the ability of quercetin to inhibit cytoplasmic HuR protein provides a rationale for using it as an anticancer agent for the treatment of aggressive TNBCs.Supplemental data for this article is available online at at 10.1080/01635581.2021.1952628.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Proteína 1 Similar a ELAV/genética , Humanos , Quercetina/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
3.
Rev Endocr Metab Disord ; 22(2): 421-451, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33052523

RESUMEN

About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote ß-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3ß), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Humanos , Inflamasomas/metabolismo , Nanotecnología , Estrés Oxidativo
4.
Biometals ; 31(2): 161-187, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29453655

RESUMEN

Minerals or trace elements in small amount are essential nutrients for every plant, but when the internal concentration exceeds the threshold, these essential elements do create phytotoxicity. Plant responses to elemental stresses are very common due to different anthropogenic activities; however it is a complex phenomenon with individual characteristics for various species. To cope up with the situation, a plant produces a group of strategies both in proteomic and genomic level to overcome it. Controlling the metal stress is known to activate a multigene response resulting in the changes in various proteins, which directly affects almost all biological processes in a living cell. Therefore, proteomic and genomic approaches can be useful for elucidating the molecular responses under metal stress. For this, it is tried to provide the latest knowledge and techniques used in proteomic and genomic study during nutritional stress and is represented here in review form.


Asunto(s)
Genómica/tendencias , Estado Nutricional/fisiología , Proteómica/tendencias , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Humanos , Oligoelementos
5.
Vet Res Commun ; 48(1): 317-327, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37684400

RESUMEN

Aflatoxins, particularly AFB1, are the most common feed contaminants worldwide, causing significant economic losses to the livestock sector. The current paper describes an outbreak of aflatoxicosis in a herd of 160 male young goat kids (3-4 months), of which 68 young kids succumbed over a period of 25 days after showing neurological signs of abnormal gait, progressive paralysis and head pressing. The haematobiochemical investigation showed reduced haemoglobin, leucocyte count, PCV level, increased levels of AST, ALT, glucose, BUN, creatinine and reduced level of total protein. Grossly, kids had pale mucous membranes, pale and swollen liver; right apical lobe consolidation, and petechiation of the synovial membrane of the hock joints. The microscopic changes were characterized by multifocal hemorrhages, status spongiosus/ vacuolation, vasculitis, focal to diffuse gliosis, satellitosis, and ischemic apoptotic neurons in different parts of the brain and spinal cord. These changes corresponded well with strong immunoreactivity for AFB1 in neurons, glia cells (oligodendrocytes, astrocytes, and ependymal cells) in various anatomical sites of the brain. The higher values of LPO and reduced levels of antioxidant enzymes (Catalase, SOD, GSH) with strong immunoreactivity of 8-OHdG in the brain indicating high level of oxidative stress. Further, the higher immunosignaling of caspase-3 and caspase-9 in the brain points towards the association with intrinsic pathway of apoptosis. The toxicological analysis of feed samples detected high amounts of AFB1 (0.38ppm). These findings suggest that AFB1 in younger goat kids has more of neurotoxic effect mediated through caspase dependent intrinsic pathway.


Asunto(s)
Encefalopatías , Enfermedades de las Cabras , Masculino , Animales , Cabras/metabolismo , Aflatoxina B1/toxicidad , Aflatoxina B1/metabolismo , Apoptosis , Estrés Oxidativo , Hígado/metabolismo , Radicales Libres/metabolismo , Radicales Libres/farmacología , Encefalopatías/metabolismo , Encefalopatías/veterinaria , Enfermedades de las Cabras/inducido químicamente
6.
Environ Sci Pollut Res Int ; 29(53): 80179-80221, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36197618

RESUMEN

Conservation of biodiversity is critical for the coexistence of humans and the sustenance of other living organisms within the ecosystem. Identification and prioritization of specific regions to be conserved are impossible without proper information about the sites. Advanced monitoring agencies like the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) had accredited that the sum total of species that are now threatened with extinction is higher than ever before in the past and are progressing toward extinct at an alarming rate. Besides this, the conceptualized global responses to these crises are still inadequate and entail drastic changes. Therefore, more sophisticated monitoring and conservation techniques are required which can simultaneously cover a larger surface area within a stipulated time frame and gather a large pool of data. Hence, this study is an overview of remote monitoring methods in biodiversity conservation via a survey of evidence-based reviews and related studies, wherein the description of the application of some technology for biodiversity conservation and monitoring is highlighted. Finally, the paper also describes various transformative smart technologies like artificial intelligence (AI) and/or machine learning algorithms for enhanced working efficiency of currently available techniques that will aid remote monitoring methods in biodiversity conservation.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Inteligencia Artificial , Biodiversidad , Conservación de los Recursos Naturales/métodos
7.
Biomater Sci ; 9(10): 3576-3602, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34008586

RESUMEN

The outstretched applications of biosensors in diverse domains has become the reason for their attraction for scientific communities. Because they are analytical devices, they can detect both quantitative and qualitative biological components through the generation of detectable signals. In the recent past, biosensors witnessed significant changes and developments in their design as well as features. Nanotechnology has revolutionized sensing phenomena by increasing biodiagnostic capacity in terms of specificity, size, and cost, resulting in exceptional sensitivity and flexibility. The steep increase of non-communicable diseases across the world has emerged as a matter of concern. In parallel, the abrupt outbreak of communicable diseases poses a serious threat to mankind. For decreasing the morbidity and mortality associated with various communicable and non-communicable diseases, early detection and subsequent treatment are indispensable. Detection of different biological markers generates quantifiable signals that can be electrochemical, mass-based, optical, thermal, or piezoelectric. Speculating on the incumbent applicability and versatility of nano-biosensors in large disciplines, this review highlights different types of biosensors along with their components and detection mechanisms. Moreover, it deals with the current advancements made in biosensors and the applications of nano-biosensors in detection of various non-communicable and communicable diseases, as well as future prospects of nano-biosensors for diagnostics.


Asunto(s)
Técnicas Biosensibles , Enfermedades Transmisibles , Biomarcadores , Enfermedades Transmisibles/diagnóstico , Humanos , Nanotecnología
8.
Front Microbiol ; 11: 2098, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193115

RESUMEN

The rapid dissemination of SARS-CoV-2 demonstrates how vulnerable it can make communities and is why it has attained the status of global pandemic. According to the estimation from Worldometer, the SARS-CoV-2 affected cases and deaths are exponentially increasing worldwide, marking the mortality rate as ∼3.8% with no probability of its cessation till now. Despite massive attempts and races among scientific communities in search of proper therapeutic options, the termination of this breakneck outbreak of COVID-19 has still not been made possible. Therefore, this review highlights the diverse molecular events induced by a viral infection, such as autophagy, unfolded protein response (UPR), and inflammasome, illustrating the intracellular cascades regulating viral replication inside the host cell. The SARS-CoV-2-mediated endoplasmic reticulum stress and apoptosis are also emphasized in the review. Additionally, host's immune response associated with SARS-CoV-2 infection, as well as the genetic and epigenetic changes, have been demonstrated, which altogether impart a better understanding of its epidemiology. Considering the drawbacks of available diagnostics and medications, herein we have presented the most sensitive nano-based biosensors for the rapid detection of viral components. Moreover, conceptualizing the viral-induced molecular changes inside its target cells, nano-based antiviral systems have also been proposed in this review.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA