Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Biol Evol ; 37(11): 3118-3130, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33219379

RESUMEN

Mutation and recombination are the primary sources of genetic variation. To better understand the evolution of genetic variation, it is crucial to comprehensively investigate the processes involving mutation accumulation and recombination. In this study, we performed mutation accumulation experiments on four heterozygous diploid yeast species in the Saccharomycodaceae family to determine spontaneous mutation rates, mutation spectra, and losses of heterozygosity (LOH). We observed substantial variation in mutation rates and mutation spectra. We also observed high LOH rates (1.65-11.07×10-6 events per heterozygous site per cell division). Biases in spontaneous mutation and LOH together with selection ultimately shape the variable genome-wide nucleotide landscape in yeast species.


Asunto(s)
Genoma Fúngico , Hanseniaspora/genética , Pérdida de Heterocigocidad , Tasa de Mutación , Acumulación de Mutaciones
2.
mSphere ; 7(1): e0079321, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107337

RESUMEN

Toxoplasma motility is both activated and suppressed by 3',5'-cyclic nucleotide signaling. Cyclic GMP (cGMP) signaling through Toxoplasma gondii protein kinase G (TgPKG) activates motility, whereas cyclic AMP (cAMP) signaling through TgPKAc1 inhibits motility. Despite their importance, it remains unclear how cGMP and cAMP levels are maintained in Toxoplasma. Phosphodiesterases (PDEs) are known to inactivate cyclic nucleotides and are highly expanded in the Toxoplasma genome. Here, we analyzed the expression and function of the 18-member TgPDE family in tachyzoites, the virulent life stage of Toxoplasma. We detected the expression of 11 of 18 TgPDEs, confirming prior expression studies. A knockdown screen of the TgPDE family revealed four TgPDEs that contribute to lytic Toxoplasma growth (TgPDE1, TgPDE2, TgPDE5, and TgPDE9). Depletion of TgPDE1 or TgPDE2 caused severe growth defects, prompting further investigation. While TgPDE1 was important for extracellular motility, TgPDE2 was important for host cell invasion, parasite replication, host cell egress, and extracellular motility. TgPDE1 displayed a plasma membrane/cytomembranous distribution, whereas TgPDE2 displayed an endoplasmic reticulum/cytomembranous distribution. Biochemical analysis of TgPDE1 and TgPDE2 purified from Toxoplasma lysates revealed that TgPDE1 hydrolyzes both cGMP and cAMP, whereas TgPDE2 was cAMP specific. Interactome studies of TgPDE1 and TgPDE2 indicated that they do not physically interact with each other or other TgPDEs but may be regulated by kinases and proteases. Our studies have identified TgPDE1 and TgPDE2 as central regulators of tachyzoite cyclic nucleotide levels and enable future studies aimed at determining how these enzymes are regulated and cooperate to control Toxoplasma motility and growth. IMPORTANCE Apicomplexan parasites require motility to actively infect host cells and cause disease. Cyclic nucleotide signaling governs apicomplexan motility, but it is unclear how cyclic nucleotide levels are maintained in these parasites. In search of novel regulators of cyclic nucleotides in the model apicomplexan Toxoplasma, we identified and characterized two catalytically active phosphodiesterases, TgPDE1 and TgPDE2, that are important for Toxoplasma's virulent tachyzoite life cycle. Enzymes that generate, sense, or degrade cyclic nucleotides make attractive targets for therapies aimed at paralyzing and killing apicomplexan parasites.


Asunto(s)
Parásitos , Toxoplasma , Animales , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleótidos Cíclicos/metabolismo , Parásitos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo
3.
Nat Ecol Evol ; 2(2): 237-240, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29292397

RESUMEN

One of the long-standing mysteries of evolutionary genomics is the source of the wide phylogenetic diversity in genome nucleotide composition (G + C versus A + T), which must be a consequence of interspecific differences in mutation bias, the efficiency of selection for different nucleotides or a combination of the two. We demonstrate that although genomic G + C composition is strongly driven by mutation bias, it is also substantially modified by direct selection and/or as a by-product of biased gene conversion. Moreover, G + C composition at fourfold redundant sites is consistently elevated above the neutral expectation-more so than for any other class of sites.


Asunto(s)
Evolución Molecular , Conversión Génica , Genoma , Nucleótidos/análisis , Mutación , Filogenia
4.
mBio ; 8(4)2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28830944

RESUMEN

Recent application of mutation accumulation techniques combined with whole-genome sequencing (MA/WGS) has greatly promoted studies of spontaneous mutation. However, such explorations have rarely been conducted on marine organisms, and it is unclear how marine habitats have influenced genome stability. This report resolves the mutation rate and spectrum of the coral reef pathogen Vibrio shilonii, which causes coral bleaching and endangers the biodiversity maintained by coral reefs. We found that its mutation rate and spectrum are highly similar to those of other studied bacteria from various habitats, despite the saline environment. The mutational properties of this marine bacterium are thus controlled by other general evolutionary forces such as natural selection and genetic drift. We also found that as pH drops, the mutation rate decreases and the mutation spectrum is biased in the direction of generating G/C nucleotides. This implies that evolutionary features of this organism and perhaps other marine microbes might be altered by the increasingly acidic ocean water caused by excess CO2 emission. Nonetheless, further exploration is needed as the pH range tested in this study was rather narrow and many other possible mutation determinants, such as carbonate increase, are associated with ocean acidification.IMPORTANCE This study explored the pH dependence of a bacterial genome-wide mutation rate. We discovered that the genome-wide rates of appearance of most mutation types decrease linearly and that the mutation spectrum is biased in generating more G/C nucleotides with pH drop in the coral reef pathogen V. shilonii.


Asunto(s)
Arrecifes de Coral , Flujo Genético , Genoma Bacteriano , Tasa de Mutación , Vibrio/genética , Animales , Antozoos/microbiología , Biodiversidad , Evolución Biológica , Dióxido de Carbono , Nucleótidos de Citosina , Inestabilidad Genómica , Genómica , Nucleótidos de Guanina , Secuenciación de Nucleótidos de Alto Rendimiento , Concentración de Iones de Hidrógeno , Acumulación de Mutaciones , Agua de Mar/química , Vibrio/patogenicidad , Vibrio/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA