Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217601

RESUMEN

The natural auxin indole-3-acetic acid (IAA) is a key regulator of many aspects of plant growth and development. Synthetic auxin herbicides such as 2,4-D mimic the effects of IAA by inducing strong auxinic-signaling responses in plants. To determine the mechanism of 2,4-D resistance in a Sisymbrium orientale (Indian hedge mustard) weed population, we performed a transcriptome analysis of 2,4-D-resistant (R) and -susceptible (S) genotypes that revealed an in-frame 27-nucleotide deletion removing nine amino acids in the degron tail (DT) of the auxin coreceptor Aux/IAA2 (SoIAA2). The deletion allele cosegregated with 2,4-D resistance in recombinant inbred lines. Further, this deletion was also detected in several 2,4-D-resistant field populations of this species. Arabidopsis transgenic lines expressing the SoIAA2 mutant allele were resistant to 2,4-D and dicamba. The IAA2-DT deletion reduced binding to TIR1 in vitro with both natural and synthetic auxins, causing reduced association and increased dissociation rates. This mechanism of synthetic auxin herbicide resistance assigns an in planta function to the DT region of this Aux/IAA coreceptor for its role in synthetic auxin binding kinetics and reveals a potential biotechnological approach to produce synthetic auxin-resistant crops using gene-editing.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético , Brassicaceae/genética , Resistencia a los Herbicidas/genética , Insecticidas , Proteínas de Plantas/genética , Receptores de Superficie Celular/genética , Eliminación de Secuencia , Brassicaceae/metabolismo , Dicamba , Simulación del Acoplamiento Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Unión Proteica , Conformación Proteica , ARN de Planta/genética , Receptores de Superficie Celular/metabolismo , Análisis de Secuencia de ARN/métodos
2.
BMC Genomics ; 24(1): 350, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365554

RESUMEN

BACKGROUND: Poa annua (annual bluegrass) is an allotetraploid turfgrass, an agronomically significant weed, and one of the most widely dispersed plant species on earth. Here, we report the chromosome-scale genome assemblies of P. annua's diploid progenitors, P. infirma and P. supina, and use multi-omic analyses spanning all three species to better understand P. annua's evolutionary novelty. RESULTS: We find that the diploids diverged from their common ancestor 5.5 - 6.3 million years ago and hybridized to form P. annua ≤ 50,000 years ago. The diploid genomes are similar in chromosome structure and most notably distinguished by the divergent evolutionary histories of their transposable elements, leading to a 1.7 × difference in genome size. In allotetraploid P. annua, we find biased movement of retrotransposons from the larger (A) subgenome to the smaller (B) subgenome. We show that P. annua's B subgenome is preferentially accumulating genes and that its genes are more highly expressed. Whole-genome resequencing of several additional P. annua accessions revealed large-scale chromosomal rearrangements characterized by extensive TE-downsizing and evidence to support the Genome Balance Hypothesis. CONCLUSIONS: The divergent evolutions of the diploid progenitors played a central role in conferring onto P. annua its remarkable phenotypic plasticity. We find that plant genes (guided by selection and drift) and transposable elements (mostly guided by host immunity) each respond to polyploidy in unique ways and that P. annua uses whole-genome duplication to purge highly parasitized heterochromatic sequences. The findings and genomic resources presented here will enable the development of homoeolog-specific markers for accelerated weed science and turfgrass breeding.


Asunto(s)
Poa , Poa/genética , Elementos Transponibles de ADN , Fitomejoramiento , Genes de Plantas , Poliploidía , Genoma de Planta , Evolución Molecular
3.
Mol Med ; 28(1): 122, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36217108

RESUMEN

BACKGROUND: Long-COVID is characterized by prolonged, diffuse symptoms months after acute COVID-19. Accurate diagnosis and targeted therapies for Long-COVID are lacking. We investigated vascular transformation biomarkers in Long-COVID patients. METHODS: A case-control study utilizing Long-COVID patients, one to six months (median 98.5 days) post-infection, with multiplex immunoassay measurement of sixteen blood biomarkers of vascular transformation, including ANG-1, P-SEL, MMP-1, VE-Cad, Syn-1, Endoglin, PECAM-1, VEGF-A, ICAM-1, VLA-4, E-SEL, thrombomodulin, VEGF-R2, VEGF-R3, VCAM-1 and VEGF-D. RESULTS: Fourteen vasculature transformation blood biomarkers were significantly elevated in Long-COVID outpatients, versus acutely ill COVID-19 inpatients and healthy controls subjects (P < 0.05). A unique two biomarker profile consisting of ANG-1/P-SEL was developed with machine learning, providing a classification accuracy for Long-COVID status of 96%. Individually, ANG-1 and P-SEL had excellent sensitivity and specificity for Long-COVID status (AUC = 1.00, P < 0.0001; validated in a secondary cohort). Specific to Long-COVID, ANG-1 levels were associated with female sex and a lack of disease interventions at follow-up (P < 0.05). CONCLUSIONS: Long-COVID patients suffer prolonged, diffuse symptoms and poorer health. Vascular transformation blood biomarkers were significantly elevated in Long-COVID, with angiogenesis markers (ANG-1/P-SEL) providing classification accuracy of 96%. Vascular transformation blood biomarkers hold potential for diagnostics, and modulators of angiogenesis may have therapeutic efficacy.


Asunto(s)
Biomarcadores , COVID-19 , Biomarcadores/sangre , COVID-19/complicaciones , Estudios de Casos y Controles , Endoglina , Femenino , Humanos , Integrina alfa4beta1 , Molécula 1 de Adhesión Intercelular , Metaloproteinasa 1 de la Matriz , Neovascularización Patológica , Molécula-1 de Adhesión Celular Endotelial de Plaqueta , Trombomodulina , Molécula 1 de Adhesión Celular Vascular , Factor A de Crecimiento Endotelial Vascular , Factor D de Crecimiento Endotelial Vascular , Síndrome Post Agudo de COVID-19
4.
Clin Proteomics ; 19(1): 50, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36572854

RESUMEN

BACKGROUND: Despite the high morbidity and mortality associated with sepsis, the relationship between the plasma proteome and clinical outcome is poorly understood. In this study, we used targeted plasma proteomics to identify novel biomarkers of sepsis in critically ill patients. METHODS: Blood was obtained from 15 critically ill patients with suspected/confirmed sepsis (Sepsis-3.0 criteria) on intensive care unit (ICU) Day-1 and Day-3, as well as age- and sex-matched 15 healthy control subjects. A total of 1161 plasma proteins were measured with proximal extension assays. Promising sepsis biomarkers were narrowed with machine learning and then correlated with relevant clinical and laboratory variables. RESULTS: The median age for critically ill sepsis patients was 56 (IQR 51-61) years. The median MODS and SOFA values were 7 (IQR 5.0-8.0) and 7 (IQR 5.0-9.0) on ICU Day-1, and 4 (IQR 3.5-7.0) and 6 (IQR 3.5-7.0) on ICU Day-3, respectively. Targeted proteomics, together with feature selection, identified the leading proteins that distinguished sepsis patients from healthy control subjects with ≥ 90% classification accuracy; 25 proteins on ICU Day-1 and 26 proteins on ICU Day-3 (6 proteins overlapped both ICU days; PRTN3, UPAR, GDF8, NTRK3, WFDC2 and CXCL13). Only 7 of the leading proteins changed significantly between ICU Day-1 and Day-3 (IL10, CCL23, TGFα1, ST2, VSIG4, CNTN5, and ITGAV; P < 0.01). Significant correlations were observed between a variety of patient clinical/laboratory variables and the expression of 15 proteins on ICU Day-1 and 14 proteins on ICU Day-3 (P < 0.05). CONCLUSIONS: Targeted proteomics with feature selection identified proteins altered in critically ill sepsis patients relative to healthy control subjects. Correlations between protein expression and clinical/laboratory variables were identified, each providing pathophysiological insight. Our exploratory data provide a rationale for further hypothesis-driven sepsis research.

5.
Environ Sci Technol ; 56(1): 325-334, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34920670

RESUMEN

Safeners are used extensively in commercial herbicide formulations. Although safeners are regulated as inert ingredients, some of their transformation products have enhanced biological activity. Here, to fill gaps in our understanding of safener environmental fate, we determined rate constants and transformation products associated with the acid- and base-mediated hydrolysis of dichloroacetamide safeners AD-67, benoxacor, dichlormid, and furilazole. Second-order rate constants for acid- (HCl) and base-mediated (NaOH) dichloroacetamide hydrolysis (2.8 × 10-3 to 0.46 and 0.3-500 M-1 h-1, respectively) were, in many cases (5 of 8), greater than those reported for their chloroacetamide herbicide co-formulants. In particular, the rate constant for base-mediated hydrolysis of benoxacor was 2 orders of magnitude greater than that of its active ingredient co-formulant, S-metolachlor. At circumneutral pH, only benoxacor underwent appreciable hydrolysis (5.3 × 10-4 h-1), and under high-pH conditions representative of lime-soda softening, benoxacor's half-life was 13 h─a timescale consistent with partial transformation during water treatment. Based on Orbitrap LC-MS/MS analysis of dichloroacetamide hydrolysis product mixtures, we propose structures for major products and three distinct mechanistic pathways that depend on the system pH and compound structure. These include base-mediated amide cleavage, acid-mediated amide cleavage, and acid-mediated oxazolidine ring opening. Collectively, this work will help to identify systems in which hydrolysis contributes to the transformation of dichloroacetamides, while also highlighting important differences in the reactivity of dichloroacetamides and their active chloroacetamide co-formulants.


Asunto(s)
Herbicidas , Acetamidas , Cromatografía Liquida , Herbicidas/química , Hidrólisis , Espectrometría de Masas en Tándem
6.
Mol Ecol ; 30(21): 5343-5359, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34614274

RESUMEN

Genomic-based epidemiology can provide insight into the origins and spread of herbicide resistance mechanisms in weeds. We used kochia (Bassia scoparia) populations resistant to the herbicide glyphosate from across western North America to test the alternative hypotheses that (i) a single EPSPS gene duplication event occurred initially in the Central Great Plains and then subsequently spread to all other geographical areas now exhibiting glyphosate-resistant kochia populations or that (ii) gene duplication occurred multiple times in independent events in a case of parallel evolution. We used qPCR markers previously developed for measuring the structure of the EPSPS tandem duplication to investigate whether all glyphosate-resistant individuals had the same EPSPS repeat structure. We also investigated population structure using simple sequence repeat markers to determine the relatedness of kochia populations from across the Central Great Plains, Northern Plains and the Pacific Northwest. We found that the original EPSPS duplication genotype was predominant in the Central Great Plains where glyphosate resistance was first reported. We identified two additional EPSPS duplication genotypes, one having geographical associations with the Northern Plains and the other with the Pacific Northwest. The EPSPS duplication genotype from the Pacific Northwest seems likely to represent a second, independent evolutionary origin of a resistance allele. We found evidence of gene flow across populations and a general lack of population structure. The results support at least two independent evolutionary origins of glyphosate resistance in kochia, followed by substantial and mostly geographically localized gene flow to spread the resistance alleles into diverse genetic backgrounds.


Asunto(s)
Bassia scoparia , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Flujo Génico , Genómica , Glicina/análogos & derivados , Resistencia a los Herbicidas/genética , Humanos , Glifosato
7.
Environ Sci Technol ; 55(21): 14658-14666, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34637294

RESUMEN

There is growing interest in the fate and effects of transformation products generated from emerging pollutant classes, and new tools that help predict the products most likely to form will aid in risk assessment. Here, using a family of structurally related steroids (enones, dienones, and trienones), we evaluate the use of density functional theory to help predict products from reaction with chlorine, a common chemical disinfectant. For steroidal dienones (e.g., dienogest) and trienones (e.g., 17ß-trenbolone), computational data support that reactions proceed through spontaneous C4 chlorination to yield 4-chloro derivatives for trienones and, after further reaction, 9,10-epoxide structures for dienones. For testosterone, a simple steroidal enone, in silico predictions suggest that C4 chlorination is still most likely, but slow at environmentally relevant conditions. Predictions were then assessed through laboratory chlorination reactions (0.5-5 mg Cl2/L) with product characterization via HRMS and NMR, which confirmed near exclusive 4-chloro and 9,10-epoxide products for most trienones and all dienones, respectively. Also consistent with computational expectations, testosterone was effectively unreactive at these same chlorine levels, although products consistent with in silico predictions were observed at higher concentrations (in excess of 500 mg Cl2/L). Although slight deviations from in silico predictions were observed for steroids with electron-rich substituents (e.g., C17 allyl-substituted altrenogest), this work highlights the potential for computational approaches to improve our understanding of transformation products generated from emerging pollutant classes.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Halogenación , Contaminantes Químicos del Agua/análisis
8.
J Org Chem ; 85(12): 7641-7647, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32470301

RESUMEN

Two shape-persistent arylene ethynylene macrocycles have been designed and synthesized as scaffolds to bind the nonpolar molecule 1,4-diiodobutadiyne. Binding via halogen bonding interactions between the pyridine moieties of the macrocycle and 1,4-diiodobutadiyne is predicted by density functional theory calculations and has been demonstrated in solution by 13C NMR titrations. The binding constant for the macrocycle-monomer complex (K = 10.5 L mol-1) is much larger than for other comparable halogen bonds, strongly supporting cooperative binding of both ends of the diyne. These results demonstrate a fully inserted geometry of 1,4-diiodobutadiyne in the complex.

9.
Plant J ; 96(5): 1051-1063, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30218635

RESUMEN

Pollen-mediated gene flow (PMGF) might play an important role in dispersing herbicide resistance alleles in dioecious weedy Amaranthus species. Field experiments in a concentric donor-receptor design were conducted to quantify two sets of PMGF studies, an interspecific (Amaranthus tuberculatus × Amaranthus palmeri) and an intraspecific (A. tuberculatus × A. tuberculatus). In both studies, PMGF was evaluated using a resistant A. tuberculatus phenotype with enhanced mesotrione detoxification via P450 enzymes as a source of resistance alleles. For interspecific hybridization, more than 104 000 putative hybrid seedlings were screened with three markers, one phenotypic and two molecular. The two molecular markers used, including 2-bp polymorphisms in the internal transcribed spacer region, distinguished A. palmeri, A. tuberculatus and their hybrids. Results showed that 0.1% hybridization between A. tuberculatus × A. palmeri occurred under field research conditions. For intraspecific hybridization, 22 582 seedlings were screened to assess the frequency of gene flow. The frequency of gene flow (FGF ) varied with distance, direction and year of the study. The farthest distance for 90% reduction of FGF was at 69 m in 2015 however, after averaging across directions it was 13.1 and 26.1 m in 2014 and 2015, respectively. This study highlights the transfer of metabolism-based mesotrione resistance from A. tuberculatus to A. palmeri under field research conditions. The results presented here might aid in the rapid detection of A. palmeri among other Amaranthus species and show that PMFG could be expediting the increase of herbicide resistance in A. palmeri and A. tuberculatus across US crop production areas.


Asunto(s)
Amaranthus/metabolismo , Ciclohexanonas , Resistencia a los Herbicidas , Herbicidas , Amaranthus/genética , Ciclohexanonas/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/metabolismo , Hibridación Genética
10.
New Phytol ; 223(4): 1770-1775, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31002387

RESUMEN

The human-directed, global selection for glyphosate resistance in weeds has revealed a fascinating diversity of evolved resistance mechanisms, including herbicide sequestration in the vacuole, a rapid cell death response, nucleotide polymorphisms in the herbicide target (5-enolpyruvylshikimate-3-phosphate synthase, EPSPS) and increased gene copy number of EPSPS. For this latter mechanism, two distinct molecular genetic mechanisms have been observed, a tandem duplication mechanism and a large extrachromosomal circular DNA (eccDNA) that is tethered to the chromosomes and passed to gametes at meiosis. These divergent mechanisms have a range of consequences for the spread, fitness, and inheritance of resistance traits, and, particularly in the case of the eccDNA, demonstrate how evolved herbicide resistance can generate new insights into plant adaptation to contemporary environmental stress.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Glicina/análogos & derivados , Resistencia a los Herbicidas , Adaptación Fisiológica/efectos de los fármacos , Duplicación de Gen , Glicina/toxicidad , Resistencia a los Herbicidas/genética , Carácter Cuantitativo Heredable , Glifosato
11.
J Org Chem ; 84(17): 11366-11371, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31381858

RESUMEN

While studying the environmental fate of potent endocrine-active steroid hormones, we observed the formation of an intramolecular [2 + 2] photocycloaddition product (2) with a novel hexacyclic ring system following the photolysis of altrenogest (1). The structure and absolute configuration were established by X-ray diffraction analysis. Theoretical computations identified a barrierless two-step cyclization mechanism for the formation of 2 upon photoexcitation. 2 exhibited progesterone, estrogen, androgen, and pregnane X receptor activity, albeit generally with reduced potency relative to 1.


Asunto(s)
Procesos Fotoquímicos , Acetato de Trembolona/análogos & derivados , Reacción de Cicloadición , Teoría Funcional de la Densidad , Humanos , Receptores Citoplasmáticos y Nucleares/metabolismo , Acetato de Trembolona/síntesis química , Acetato de Trembolona/química , Acetato de Trembolona/metabolismo
12.
J Exp Child Psychol ; 177: 248-264, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30261434

RESUMEN

Does imitation involve specialized mechanisms or general-unspecialized-learning processes? To address this question, preschoolers (3- and 4-year-olds) were assigned to one of four "practice" groups. Before and after the practice phases, each group was tested on a novel Spatial Imitation sequence. During the practice phase, children in the Spatial Imitation group practiced jointly attending, vicariously encoding, and copying the novel spatial sequences. In the Item Imitation group, children practiced jointly attending, vicariously encoding, and copying novel item sequences. In the Trial-and-Error group, children practiced encoding and recalling a series of novel spatial sequences entirely through individual (operant) learning. In the Free Play (no practice) control group, children played a touchscreen drawing game that controlled for practice time on the touchscreen and mirrored some of the same actions and responses used in the experimental conditions. Results of the difference between pre- and post-practice effects on novel spatial imitation sequences showed that only the Spatial Imitation practice group significantly improved relative to the Free Play group. Individual Spatial Trial-and-Error practice did not significantly improve spatial imitation. The effect of Item Imitation practice was intermediate. These results are inconsistent with the hypothesis that general processes alone--or primarily--support imitation learning and is more consistent with a mosaic model that posits an additive-interaction-effect on imitation performance where a more general social cognitive mechanism (i.e., natural pedagogy) gathers the relevant information from the demonstration and another more specialized mechanism (i.e., imitation specific) transforms that information into a matching response.


Asunto(s)
Conducta Imitativa , Aprendizaje , Recuerdo Mental , Práctica Psicológica , Preescolar , Femenino , Humanos , Masculino , Conducta Social
13.
Pestic Biochem Physiol ; 159: 22-26, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31400780

RESUMEN

Herbicide efficacy depends on herbicides crossing cell and organelle membranes. We evaluated an artificial membrane system to understand how herbicides cross biological membranes. This understanding aids in predicting herbicide behavior in planta and, consequently, efficacy, mode of action, and whether active transporter-based herbicide resistance mechanisms may be possible. Five herbicides with different log Kow and pKa values were assessed: glyphosate, 2,4-D, clopyralid, sulfentrazone and glufosinate. The artificial membrane apparatus included four semipermeable membranes containing buffers with pH 2.7, 5 and/or 7.4, floating in a bath of diethyl ether. These conditions were based on the pH from different cellular compartments and the pKa for these herbicides. Changes in herbicide concentration due to movement were measured using radioactivity or liquid chromatography mass spectrometry. In general, herbicide behavior followed the pattern predicted by their calculated pKa and log Kow. Herbicides added to an acidic phase (pH 2.7) were more mobile than when they were added to the more basic phase (pH 7.4), except when herbicide's pKa was lower than the pH of the starting phase. Clopyralid, 2,4-D, and sulfentrazone showed significant acid trapping behavior due to their weak acid functional groups. Sulfentrazone and 2,4-D had a high affinity for the nonpolar, diethyl ether bath, especially when they were protonated at low pH. Our findings illustrate the robustness of the system to provide predictions about herbicide behavior at the subcellular level.


Asunto(s)
Herbicidas/metabolismo , Ácido 2,4-Diclorofenoxiacético/metabolismo , Aminobutiratos/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Concentración de Iones de Hidrógeno , Membranas Artificiales , Ácidos Picolínicos/metabolismo , Sulfonamidas/metabolismo , Triazoles/metabolismo , Glifosato
15.
Am J Pathol ; 187(5): 1121-1133, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28320610

RESUMEN

Carbon monoxide-releasing molecules (CORMs) suppress inflammation by reducing polymorphonuclear leukocyte (PMN) recruitment to the affected organs. We investigated modulation of PMN-endothelial cell adhesive interactions by water-soluble CORM-401 using an experimental model of endotoxemia in vitro. Human umbilical vein endothelial cells (HUVEC) grown on laminar-flow perfusion channels were stimulated with 1 µg/mL lipopolysaccharide for 6 hours and perfused with 100 µmol/L CORM-401 (or inactive compound iCORM-401)-pretreated PMN for 5 minutes in the presence of 1.0 dyn/cm2 shear stress. HUVEC: PMN co-cultures were perfused for additional 15 minutes with PMN-free medium containing CORM-401/inactive CORM-401. The experiments were videorecorded (phase-contrast microscopy), and PMN adhesion/migration were assessed off-line. In parallel, CORM-401-dependent modulation of PMN chemotaxis, F-actin expression/distribution, and actin-regulating pathways [eg, p21-activated protein kinases (PAK1/2) and extracellular signal-regulated kinase (ERK)/C-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPK)] were assessed in response to N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation. Pretreating PMN with CORM-401 did not suppress PMN adhesion to HUVEC, but significantly reduced PMN transendothelial migration (P < 0.0001) and fMLP-induced PMN chemotaxis (ie, migration directionality and velocity). These changes were associated with CORM-401-dependent suppression of F-actin levels/cellular distribution and fMLP-induced phosphorylation of PAK1/2 and ERK/JNK MAPK (P < 0.05). CORM-401 had no effect on p38 MAPK activation. In summary, this study demonstrates, for the first time, CORM-401-dependent suppression of neutrophil migratory potential associated with modulation of PAK1/2 and ERK/JNK MAPK signaling and F-actin dynamics.


Asunto(s)
Monóxido de Carbono/metabolismo , Movimiento Celular/fisiología , Neutrófilos/fisiología , Actinas/metabolismo , Antígenos CD18/metabolismo , Adhesión Celular/fisiología , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosforilación/fisiología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo
16.
J Exp Bot ; 69(18): 4309-4321, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-29897472

RESUMEN

Seeds exist in the vulnerable state of being unable to repair the chemical degradation all organisms suffer, which slowly ages seeds and eventually results in death. Proposed seed aging mechanisms involve all classes of biological molecules, and degradation of total RNA has been detected contemporaneously with viability loss in dry-stored seeds. To identify changes specific to mRNA, we examined the soybean (Glycine max) seed transcriptome, using new, whole-molecule sequencing technology. We detected strong evidence of transcript fragmentation in 23-year-old, compared with 2-year-old, seeds. Transcripts were broken non-specifically, and greater fragmentation occurred in longer transcripts, consistent with the proposed mechanism of molecular fission by free radical attack at random bases. Seeds died despite high integrity of short transcripts, indicating that functions encoded by short transcripts are not sufficient to maintain viability. This study provides an approach to probe the asymptomatic phase of seed aging, namely by quantifying transcript degradation as a function of storage time.


Asunto(s)
Glycine max/fisiología , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Semillas/fisiología , Transcriptoma/fisiología
17.
J Hered ; 109(2): 117-125, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29040588

RESUMEN

One of the increasingly widespread mechanisms of resistance to the herbicide glyphosate is copy number variation (CNV) of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene. EPSPS gene duplication has been reported in 8 weed species, ranging from 3 to 5 extra copies to more than 150 extra copies. In the case of Palmer amaranth (Amaranthus palmeri), a section of >300 kb containing EPSPS and many other genes has been replicated and inserted at new loci throughout the genome, resulting in significant increase in total genome size. The replicated sequence contains several classes of mobile genetic elements including helitrons, raising the intriguing possibility of extra-chromosomal replication of the EPSPS-containing sequence. In kochia (Kochia scoparia), from 3 to more than 10 extra EPSPS copies are arranged as a tandem gene duplication at one locus. In the remaining 6 weed species that exhibit EPSPS gene duplication, little is known about the underlying mechanisms of gene duplication or their entire sequence. There is mounting evidence that adaptive gene amplification is an important mode of evolution in the face of intense human-mediated selection pressure. The convergent evolution of CNVs for glyphosate resistance in weeds, through at least 2 different mechanisms, may be indicative of a more general importance for this mechanism of adaptation in plants. CNVs warrant further investigation across plant functional genomics for adaptation to biotic and abiotic stresses, particularly for adaptive evolution on rapid time scales.


Asunto(s)
3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Evolución Molecular , Duplicación de Gen , Glicina/análogos & derivados , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Plantas/genética , 3-Fosfoshikimato 1-Carboxiviniltransferasa/antagonistas & inhibidores , Amaranthus/efectos de los fármacos , Amaranthus/genética , Bassia scoparia/efectos de los fármacos , Bassia scoparia/genética , Amplificación de Genes , Genes de Plantas , Glicina/farmacología , Plantas/efectos de los fármacos , Poaceae/efectos de los fármacos , Poaceae/genética , Glifosato
18.
Crit Care Med ; 44(9): e846-53, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27071071

RESUMEN

OBJECTIVE: Diabetic ketoacidosis in children is associated with vasogenic cerebral edema, possibly due to the release of destructive polymorphonuclear neutrophil azurophilic enzymes. Our objectives were to measure plasma azurophilic enzyme levels in children with diabetic ketoacidosis, to correlate plasma azurophilic enzyme levels with diabetic ketoacidosis severity, and to determine whether azurophilic enzymes disrupt the blood-brain barrier in vitro. DESIGN: Prospective clinical and laboratory study. SETTING: The Children's Hospital, London Health Sciences Centre. SUBJECTS: Pediatric type 1 diabetes patients; acute diabetic ketoacidosis or age-/sex-matched insulin-controlled. MEASUREMENTS AND MAIN RESULTS: Acute diabetic ketoacidosis in children was associated with elevated polymorphonuclear neutrophils. Plasma azurophilic enzymes were elevated in diabetic ketoacidosis patients, including human leukocyte elastase (p < 0.001), proteinase-3 (p < 0.01), and myeloperoxidase (p < 0.001). A leukocyte origin of human leukocyte elastase and proteinase-3 in diabetic ketoacidosis was confirmed with buffy coat quantitative real-time polymerase chain reaction (p < 0.01). Of the three azurophilic enzymes elevated, only proteinase-3 levels correlated with diabetic ketoacidosis severity (p = 0.002). Recombinant proteinase-3 applied to human brain microvascular endothelial cells degraded both the tight junction protein occludin (p < 0.05) and the adherens junction protein VE-cadherin (p < 0.05). Permeability of human brain microvascular endothelial cell monolayers was increased by recombinant proteinase-3 application (p = 0.010). CONCLUSIONS: Our results indicate that diabetic ketoacidosis is associated with systemic polymorphonuclear neutrophil activation and degranulation. Of all the polymorphonuclear neutrophil azurophilic enzymes examined, only proteinase-3 correlated with diabetic ketoacidosis severity and potently degraded the blood-brain barrier in vitro. Proteinase-3 might mediate vasogenic edema during diabetic ketoacidosis, and selective proteinase-3 antagonists may offer future vascular- and neuroprotection.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Edema Encefálico/enzimología , Cetoacidosis Diabética/enzimología , Elastasa de Leucocito/sangre , Mieloblastina/sangre , Peroxidasa/sangre , Edema Encefálico/etiología , Estudios de Casos y Controles , Catepsina G/sangre , Técnicas de Cultivo de Célula , Niño , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/enzimología , Cetoacidosis Diabética/complicaciones , Células Endoteliales/fisiología , Femenino , Humanos , Masculino
19.
Pediatr Res ; 79(2): 295-300, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26492282

RESUMEN

BACKGROUND: Diabetic ketoacidosis (DKA) in children is associated with cerebrovascular-related complications. We recently reported that DKA facilitates leukocyte adherence to the brain microvascular endothelium. Adhered leukocytes can release enzymes that instigate vascular dysfunction. Our aims were to measure plasma levels of leukocyte-derived matrix metalloproteinases (MMPs) from DKA patients and to correlate plasma MMP concentrations with DKA severity. METHODS: Plasma was obtained from children with type 1 diabetes, either in DKA (n = 16) or insulin controlled (CON; n = 16). Antibody microarray and gelatin zymography were used to quantify plasma MMPs and their endogenous tissue inhibitors (TIMPs). MMP concentrations were correlated with DKA severity (blood pH). Quantitative PCR of leukocyte mRNA was used to help determine the origin of plasma MMPs. RESULTS: DKA was associated with altered plasma levels of ↓MMP-2 (P < 0.001), ↑MMP-8 (P < 0.001), ↑MMP-9 (P < 0.05), and ↑TIMP-4 (P < 0.001), as compared with CON. Elevated MMP-8 and MMP-9 were both positively correlated with DKA severity (P < 0.05). DKA was associated with increased leukocyte mRNA for MMP-8, MMP-9, and TIMP-4 (P < 0.005). CONCLUSION: MMPs are dynamically regulated during DKA. Plasma MMP-8 and MMP-9 concentrations correlate with DKA severity and are known to degrade brain microvascular endothelial cell tight junctions. Thus, leukocyte-derived MMPs might contribute to DKA-associated cerebrovascular complications.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Cetoacidosis Diabética/enzimología , Leucocitos/enzimología , Metaloproteinasa 8 de la Matriz/sangre , Metaloproteinasa 9 de la Matriz/sangre , Biomarcadores/sangre , Niño , Diabetes Mellitus Tipo 1/sangre , Cetoacidosis Diabética/sangre , Cetoacidosis Diabética/etiología , Femenino , Regulación Enzimológica de la Expresión Génica , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/sangre , Metaloproteinasa 8 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , ARN Mensajero/sangre , Índice de Severidad de la Enfermedad , Factores de Tiempo , Inhibidores Tisulares de Metaloproteinasas/sangre , Inhibidor Tisular de Metaloproteinasa-4
20.
Environ Sci Technol ; 50(13): 6753-61, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-26800354

RESUMEN

Photolysis experiments (in H2O and D2O) and quantum chemical calculations were performed to explore the pH-dependent, reversible photohydration of trenbolone acetate (TBA) metabolites. Photohydration of 17α-trenbolone (17α-TBOH) and 17ß-trenbolone (17ß-TBOH) occurred readily in simulated sunlight to yield hydrated products with incorporated H(+) at C4 and OH(-) at either C5 (5-OH-TBOH) or C12 (12-OH-TBOH) in the tetracyclic steroid backbone. Although unable to be elucidated analytically, theory suggests preferred orientations of cis-12-OH-TBOH (relative to C13 methyl) and trans-5-OH-TBOH, with the former most thermodynamically stable overall. Both experiment and theory indicate limited stability of trans-5-OH-TBOH at acidic pH where it undergoes concurrent, carbocation-mediated thermal rearrangement to cis-12-OH-TBOH and dehydration to regenerate its parent structure. Experiments revealed cis-12-OH-TBOH to be more stable at acidic pH, which is the only condition where its reversion to parent TBA metabolite occurred. At basic pH cis-12-OH-TBOH decayed quickly via hydroxide/water addition, behavior that theory attributes to the formation of a stable enolate resistant to dehydration but prone to thermal hydration. In a noteworthy deviation from predicted theoretical stability, 17α-TBOH photohydration yields major trans-5-OH-TBOH and minor cis-12-OH-TBOH, a distribution also opposite that observed for 17ß-TBOH. Because H(+) and OH(-) loss from adjacent carbon centers allows trans-5-OH-TBOH to dehydrate at all pH values, the presumed kinetically controlled yield of 17α-TBOH photohydrates results in a greater propensity for 17α-TBOH reversion than 17ß-TBOH. Additional calculations explored minor, but potentially bioactive, trenbolone analogs that could be generated via alternative rearrangement of the acidic carbocation intermediate.


Asunto(s)
Acetato de Trembolona , Contaminantes Químicos del Agua , Fotólisis , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA