Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(16): e2400203121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38598338

RESUMEN

Viral outbreaks can cause widespread disruption, creating the need for diagnostic tools that provide high performance and sample versatility at the point of use with moderate complexity. Current gold standards such as PCR and rapid antigen tests fall short in one or more of these aspects. Here, we report a label-free and amplification-free nanopore sensor platform that overcomes these challenges via direct detection and quantification of viral RNA in clinical samples from a variety of biological fluids. The assay uses an optofluidic chip that combines optical waveguides with a fluidic channel and integrates a solid-state nanopore for sensing of individual biomolecules upon translocation through the pore. High specificity and low limit of detection are ensured by capturing RNA targets on microbeads and collecting them by optical trapping at the nanopore location where targets are released and rapidly detected. We use this device for longitudinal studies of the viral load progression for Zika and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections in marmoset and baboon animal models, respectively. The up to million-fold trapping-based target concentration enhancement enables amplification-free RNA quantification across the clinically relevant concentration range down to the assay limit of RT-qPCR as well as cases in which PCR failed. The assay operates across all relevant biofluids, including semen, urine, and whole blood for Zika and nasopharyngeal and throat swab, rectal swab, and bronchoalveolar lavage for SARS-CoV-2. The versatility, performance, simplicity, and potential for full microfluidic integration of the amplification-free nanopore assay points toward a unique approach to molecular diagnostics for nucleic acids, proteins, and other targets.


Asunto(s)
Nanoporos , Infección por el Virus Zika , Virus Zika , Animales , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Primates/genética , Virus Zika/genética , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico
2.
Artículo en Inglés | MEDLINE | ID: mdl-33390686

RESUMEN

Infectious disease outbreaks such as Ebola and other Viral Hemorrhagic Fevers (VHF) require low-complexity, specific, and differentiated diagnostics as illustrated by the recent outbreak in the Democratic Republic of Congo. Here, we describe amplification-free spectrally multiplex detection of four different VHF total RNA samples using multi-spot excitation on a multimode interference waveguide platform along with combinatorial fluorescence labeling of target nucleic acids. In these experiments, we observed an average of 8-fold greater fluorescence signal amplitudes for the Ebola total RNA sample compared to three other total RNA samples: Lake Victoria Marburg Virus, Ravn Marburg Virus, and Crimean-Congo Hemorrhagic Fever. We have attributed this amplitude amplification to an increased amount of RNA during synthesis of soluble glycoprotein in infection. This hypothesis is confirmed by single molecule detection of the total RNA sample after heat-activated release from the carrier microbeads. From these experiments, we observed at least a 5.3x higher RNA mass loading on the Ebola carrier microbeads compared to the Lake Victoria Marburg carrier microbeads, which is consistent with the known production of soluble glycoprotein during infection.

3.
Virol J ; 16(1): 99, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395061

RESUMEN

BACKGROUND: Both vector borne and sexual transmission of Zika virus (ZIKV) involve infection of epithelial cells in the initial stages of infection. Epithelial cells are unique in their ability to form polarized monolayers and their barrier function. Cell polarity induces an asymmetry in the epithelial monolayer, which is maintained by tight junctions and specialized sorting machinery. This differential localization can have a potential impact of virus infection. Asymmetrical distribution of a viral receptor can restrict virus entry to a particular membrane while polarized sorting can lead to a directional release of virions. The present study examined the impact of cell polarity on ZIKV infection and release. METHODS: A polarized Caco-2 cell model we described previously was used to assess ZIKV infection. Transepithelial resistance (TEER) was used to assess epithelial cell polarity, and virus infection was measured by immunofluorescence microscopy and qRT-PCR. Cell permeability was measured using a fluorescein leakage assay. Statistical significance was calculated using one-way ANOVA and significance was set at p < 0.05. RESULTS: Using the Caco-2 cell model for polarized epithelial cells, we report that Zika virus preferentially infects polarized cells from the apical route and is released vectorially through the basolateral route. Our data also indicates that release occurs without disruption of cell permeability. CONCLUSIONS: Our results show that ZIKV has directional infection and egress in a polarized cell system. This mechanism of directional infection may be one of the mechanisms that enables the cross the epithelial barrier effectively without a disruption in cell monolayer integrity. Elucidation of entry and release characteristics of Zika virus in polarized epithelial cells can lead to better understanding of virus dissemination in the host, and can help in developing effective therapeutic interventions.


Asunto(s)
Polaridad Celular , Células Epiteliales/virología , Internalización del Virus , Virus Zika/fisiología , Células CACO-2 , Humanos , Microscopía Fluorescente , Receptores Virales/fisiología
4.
J Infect Dis ; 218(suppl_5): S545-S552, 2018 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29893888

RESUMEN

In this study, we investigated immune responses induced by purified Ebola virus (EBOV) soluble glycoprotein (sGP) subunit vaccines via intradermal immunization with microneedle (MN) patches in comparison with intramuscular (IM) injection in mice. Our results showed that MN delivery of EBOV sGP was superior to IM injection in eliciting higher levels and longer lasting antibody responses against EBOV sGP and GP antigens. Moreover, sGP-specific immune responses induced by MN or IM immunizations were effectively augmented by formulating sGP with a saponin-based adjuvant, and they were shown to confer complete protection of mice against lethal mouse-adapted EBOV (MA-EBOV) challenge. In comparison, mice that received sGP without adjuvant by MN or IM immunizations succumbed to lethal MA-EBOV challenge. These results show that immunization with EBOV sGP subunit vaccines with adjuvant by MN patches, which have been shown to provide improved safety and thermal stability, is a promising approach to protect against EBOV infection.


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Vacunación , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Antivirales/biosíntesis , Formación de Anticuerpos , Vacunas contra el Virus del Ébola/administración & dosificación , Femenino , Células HEK293 , Células HeLa , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Inyecciones Intramusculares , Ratones , Ratones Endogámicos BALB C , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
5.
Syst Biol ; 66(3): 463-473, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27798405

RESUMEN

Botanical, mycological, zoological, and prokaryotic species names follow the Linnaean format, consisting of an italicized Latinized binomen with a capitalized genus name and a lower case species epithet (e.g., Homo sapiens). Virus species names, however, do not follow a uniform format, and, even when binomial, are not Linnaean in style. In this thought exercise, we attempted to convert all currently official names of species included in the virus family Arenaviridae and the virus order Mononegavirales to Linnaean binomials, and to identify and address associated challenges and concerns. Surprisingly, this endeavor was not as complicated or time-consuming as even the authors of this article expected when conceiving the experiment. [Arenaviridae; binomials; ICTV; International Committee on Taxonomy of Viruses; Mononegavirales; virus nomenclature; virus taxonomy.].


Asunto(s)
Clasificación , Virus , Terminología como Asunto
6.
Virol J ; 15(1): 135, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30165875

RESUMEN

BACKGROUND: Currently, no FDA-approved vaccines or treatments are available for Ebola virus disease (EVD), and therapy remains largely supportive. Ebola virus (EBOV) has broad tissue tropism and can infect a variety of cells including epithelial cells. Epithelial cells differ from most other cell types by their polarized phenotype and barrier function. In polarized cells, the apical and basolateral membrane domains are demarcated by tight junctions, and specialized sorting machinery, which results in a difference in composition between the two membrane domains. These specialized sorting functions can have important consequences for viral infections. Differential localization of a viral receptor can restrict virus entry to a particular membrane while polarized sorting can lead to a vectorial virus release. The present study investigated the impact of cell polarity on EBOV infection. METHODS: Characteristics of EBOV infection in polarized cells were evaluated in the polarized Caco-2 model grown on semipermeable transwells. Transepithelial resistance (TEER), which is a function of tight junctions, was used to assess epithelial cell polarization. EBOV infection was assessed with immunofluorescence microscopy and qPCR. Statistical significance was calculated using one-way ANOVA and significance was set at p < 0.05. RESULTS: Our data indicate that EBOV preferentially infects cells from the basolateral route, and this preference may be influenced by the resistance across the Caco-2 monolayer. Infection occurs without changes in cellular permeability. Further, our data show that basolateral infection bias may be dependent on polarized distribution of heparan sulfate, a known viral attachment factor. Treatment with iota-carrageenan, or heparin lyase, which interrupts viral interaction with cellular heparan sulfate, significantly reduced cell susceptibility to basolateral infection, likely by inhibiting virus attachment. CONCLUSIONS: Our results show cell polarity has an impact on EBOV infection. EBOV preferentially infects polarized cells through the basolateral route. Access to heparan sulfate is an important factor during basolateral infection and blocking interaction of cellular heparan sulfate with virus leads to significant inhibition of basolateral infection in the polarized Caco-2 cell model.


Asunto(s)
Ebolavirus/fisiología , Células Epiteliales/virología , Heparitina Sulfato/metabolismo , Acoplamiento Viral , Células CACO-2 , Humanos , Microscopía Fluorescente , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
Arch Virol ; 162(8): 2493-2504, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28389807

RESUMEN

In 2017, the order Mononegavirales was expanded by the inclusion of a total of 69 novel species. Five new rhabdovirus genera and one new nyamivirus genus were established to harbor 41 of these species, whereas the remaining new species were assigned to already established genera. Furthermore, non-Latinized binomial species names replaced all paramyxovirus and pneumovirus species names, thereby accomplishing application of binomial species names throughout the entire order. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Asunto(s)
Genoma Viral , Mononegavirales/clasificación , Orden Génico , Mononegavirales/genética , Filogenia , Especificidad de la Especie
8.
Microbiol Immunol ; 61(3-4): 130-137, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28332721

RESUMEN

Given that Ebola virus causes severe hemorrhagic fever in humans with mortality rates as high as 90%, rapid and accurate detection of this virus is essential both for controlling infection and preventing further transmission. Here, a one-step qRT-PCR assay for rapid and quantitative detection of an Ebola Zaire strain using GP, VP24 or VP40 genes as a target is introduced. Routine assay conditions for hydrolysis probe detection were established from the manufacturer's protocol used in the assays. The analytical specificity and sensitivity of each assay was evaluated using in vitro synthesized viral RNA transcripts. The assays were highly specific for the RNA transcripts, no cross-reactivity being observed among them. The limits of detection of the assays ranged from 102 to 103 copies per reaction. The assays were also evaluated using viral RNAs extracted from cell culture-propagated viruses (Ebola Zaire, Sudan and Reston strains), confirming that they are gene- and strain-specific. The RT-PCR assays detected viral RNAs in blood samples from virus-infected animal, suggesting that they can be also a useful method for identifying Ebola virus in clinical samples.


Asunto(s)
Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/diagnóstico , Fiebre Hemorrágica Ebola/virología , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Animales , Sangre/virología , Ebolavirus/genética , Humanos , Sensibilidad y Especificidad , Proteínas del Envoltorio Viral/genética , Proteínas de la Matriz Viral/genética , Proteínas Virales/genética
9.
J Virol ; 89(13): 6773-81, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25903348

RESUMEN

UNLABELLED: This study addresses the role of Ebola virus (EBOV) specific infectivity in virulence. Filoviruses are highly lethal, enveloped, single-stranded negative-sense RNA viruses that can cause hemorrhagic fever. No approved vaccines or therapies exist for filovirus infections, and infectious virus must be handled in maximum containment. Efficacy testing of countermeasures, in addition to investigations of pathogenicity and immune response, often requires a well-characterized animal model. For EBOV, an obstacle in performing accurate disease modeling is a poor understanding of what constitutes an infectious dose in animal models. One well-recognized consequence of viral passage in cell culture is a change in specific infectivity, often measured as a particle-to-PFU ratio. Here, we report that serial passages of EBOV in cell culture resulted in a decrease in particle-to-PFU ratio. Notably, this correlated with decreased potency in a lethal cynomolgus macaque (Macaca fascicularis) model of infection; animals were infected with the same viral dose as determined by plaque assay, but animals that received more virus particles exhibited increased disease. This suggests that some particles are unable to form a plaque in a cell culture assay but are able to result in lethal disease in vivo. These results have a significant impact on how future studies are designed to model EBOV disease and test countermeasures. IMPORTANCE: Ebola virus (EBOV) can cause severe hemorrhagic disease with a high case-fatality rate, and there are no approved vaccines or therapies. Specific infectivity can be considered the total number of viral particles per PFU, and its impact on disease is poorly understood. In stocks of most mammalian viruses, there are particles that are unable to complete an infectious cycle or unable to cause cell pathology in cultured cells. We asked if these particles cause disease in nonhuman primates by infecting monkeys with equal infectious doses of genetically identical stocks possessing either high or low specific infectivities. Interestingly, some particles that did not yield plaques in cell culture assays were able to result in lethal disease in vivo. Furthermore, the number of PFU needed to induce lethal disease in animals was very low. Our results have a significant impact on how future studies are designed to model EBOV disease and test countermeasures.


Asunto(s)
Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Animales , Modelos Animales de Enfermedad , Ebolavirus/crecimiento & desarrollo , Ebolavirus/patogenicidad , Haplorrinos , Fiebre Hemorrágica Ebola/mortalidad , Macaca fascicularis , Pase Seriado , Análisis de Supervivencia , Carga Viral , Ensayo de Placa Viral , Virulencia
10.
Transfusion ; 56 Suppl 1: S6-15, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27001363

RESUMEN

BACKGROUND: Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called "convalescent plasma," is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV+RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV+RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of Ebola virus disease (EVD). STUDY DESIGN AND METHODS: Four in vitro experiments were conducted to evaluate effects of UV+RB on green fluorescent protein EBOV (EBOV-GFP), wild-type EBOV in serum, and whole blood, respectively, and on immunoglobulins and complement in plasma. Initial titers for Experiments 1 to 3 were 4.21 log GFP units/mL, 4.96 log infectious units/mL, and 4.23 log plaque-forming units/mL. Conditions tested in the first three experiments included the following: 1-EBOV-GFP plus UV+RB; 2-EBOV-GFP plus RB only; 3-EBOV-GFP plus UV only; 4-EBOV-GFP without RB or UV; 5-virus-free control plus UV only; and 6-virus-free control without RB or UV. RESULTS: UV+RB reduced EBOV titers to nondetectable levels in both nonhuman primate serum (≥2.8- to 3.2-log reduction) and human whole blood (≥3.0-log reduction) without decreasing protective antibody titers in human plasma. CONCLUSION: Our in vitro results demonstrate that the UV+RB treatment efficiently reduces EBOV titers to below limits of detection in both serum and whole blood. In vivo testing to determine whether UV+RB can improve convalescent blood product safety is indicated.


Asunto(s)
Sangre/virología , Desinfección/métodos , Ebolavirus , Fiebre Hemorrágica Ebola/prevención & control , Riboflavina/farmacología , Rayos Ultravioleta , Inactivación de Virus/efectos de la radiación , Animales , Chlorocebus aethiops , Humanos , Macaca fascicularis , Células Vero
11.
J Infect Dis ; 212 Suppl 2: S295-304, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25920319

RESUMEN

Sudan virus (SUDV), like the closely related Ebola virus (EBOV), is a filovirus that causes severe hemorrhagic disease. They both contain an RNA editing site in the glycoprotein gene that controls expression of soluble and full-length protein. We tested the consequences of cell culture passage on the genome sequence at the SUDV editing site locus and determined whether this affected virulence. Passage resulted in expansion of the SUDV editing site, similar to that observed with EBOV. We compared viruses possessing either the wild-type or expanded editing site, using a nonhuman primate model of disease. Despite differences in virus serum titer at one time point, there were no significant differences in time to death or any other measured parameter. These data imply that changes at this locus were not important for SUDV lethality.


Asunto(s)
Ebolavirus/genética , Ebolavirus/patogenicidad , Glicoproteínas/genética , Fiebre Hemorrágica Ebola/virología , Edición de ARN/genética , Animales , Chlorocebus aethiops , Genoma Viral/genética , Haplorrinos , Pase Seriado/métodos , Sudán , Células Vero/virología , Carga Viral/métodos , Virulencia/genética
12.
J Infect Dis ; 212 Suppl 2: S398-403, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25877553

RESUMEN

In addition to its surface glycoprotein (GP), Ebola virus directs the production of large quantities of a truncated glycoprotein isoform (sGP) that is secreted into the extracellular space. We recently reported that sGP actively diverts host antibody responses against the epitopes that it shares with GP and thereby allows itself to absorb anti-GP antibodies, a phenomenon we termed "antigenic subversion." To investigate the effect of antigenic subversion by sGP on protection against virus infection, we compared immune responses induced by different prime-boost immunization regimens with GP and sGP DNA vaccines in mice and their efficacy against lethal Ebola virus challenge. Similar levels of anti-GP antibodies were induced by 2 immunizations with sGP and GP DNA vaccines. However, 2 immunizations with GP but not sGP DNA vaccine fully protected mice from lethal challenge. Boosting with sGP or GP DNA vaccine in mice that had been primed by GP or sGP DNA vaccine augmented the levels of anti-GP antibody responses and further improved protective efficacy against Ebola virus infection. These results show that both the quality and the levels of anti-GP antibody responses affect the efficacy of protection against Ebola virus infection.


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Glicoproteínas/inmunología , Fiebre Hemorrágica Ebola/inmunología , Isoformas de Proteínas/inmunología , Vacunas de ADN/inmunología , Proteínas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos/inmunología , Femenino , Células HEK293 , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunización Secundaria/métodos , Ratones , Ratones Endogámicos BALB C , Vacunación/métodos
13.
J Infect Dis ; 212 Suppl 2: S425-34, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26206510

RESUMEN

BACKGROUND: The current Ebola virus (EBOV) outbreak has highlighted the troubling absence of available antivirals or vaccines to treat infected patients and stop the spread of EBOV. The EBOV glycoprotein (GP) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-EBOV drugs. We report the identification of 2 novel EBOV inhibitors targeting viral entry. METHODS: To identify small molecule inhibitors of EBOV entry, we carried out a cell-based high-throughput screening using human immunodeficiency virus-based pseudotyped viruses expressing EBOV-GP. Two compounds were identified, and mechanism-of-action studies were performed using immunoflourescence, AlphaLISA, and enzymatic assays for cathepsin B inhibition. RESULTS: We report the identification of 2 novel entry inhibitors. These inhibitors (1) inhibit EBOV infection (50% inhibitory concentration, approximately 0.28 and approximately 10 µmol/L) at a late stage of entry, (2) induce Niemann-Pick C phenotype, and (3) inhibit GP-Niemann-Pick C1 (NPC1) protein interaction. CONCLUSIONS: We have identified 2 novel EBOV inhibitors, MBX2254 and MBX2270, that can serve as starting points for the development of an anti-EBOV therapeutic agent. Our findings also highlight the importance of NPC1-GP interaction in EBOV entry and the attractiveness of NPC1 as an antifiloviral therapeutic target.


Asunto(s)
Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/virología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Chlorocebus aethiops , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/metabolismo , Proteína Niemann-Pick C1 , Unión Proteica/efectos de los fármacos , Células Vero , Internalización del Virus/efectos de los fármacos
14.
J Virol ; 87(10): 5384-96, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23468487

RESUMEN

Since viruses rely on functional cellular machinery for efficient propagation, apoptosis is an important mechanism to fight viral infections. In this study, we sought to determine the mechanism of cell death caused by Ebola virus (EBOV) infection by assaying for multiple stages of apoptosis and hallmarks of necrosis. Our data indicate that EBOV does not induce apoptosis in infected cells but rather leads to a nonapoptotic form of cell death. Ultrastructural analysis confirmed necrotic cell death of EBOV-infected cells. To investigate if EBOV blocks the induction of apoptosis, infected cells were treated with different apoptosis-inducing agents. Surprisingly, EBOV-infected cells remained sensitive to apoptosis induced by external stimuli. Neither receptor- nor mitochondrion-mediated apoptosis signaling was inhibited in EBOV infection. Although double-stranded RNA (dsRNA)-induced activation of protein kinase R (PKR) was blocked in EBOV-infected cells, induction of apoptosis mediated by dsRNA was not suppressed. When EBOV-infected cells were treated with dsRNA-dependent caspase recruiter (dsCARE), an antiviral protein that selectively induces apoptosis in cells containing dsRNA, virus titers were strongly reduced. These data show that the inability of EBOV to block apoptotic pathways may open up new strategies toward the development of antiviral therapeutics.


Asunto(s)
Muerte Celular , Ebolavirus/inmunología , Ebolavirus/patogenicidad , Transducción de Señal , Animales , Chlorocebus aethiops , Células HeLa , Humanos , Células Vero
15.
J Virol ; 87(6): 3295-304, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23302881

RESUMEN

Filoviruses are the cause of severe hemorrhagic fever in human and nonhuman primates. The envelope glycoprotein (GP), responsible for both receptor binding and fusion of the virus envelope with the host cell membrane, has been demonstrated to interact with multiple molecules in order to enhance entry into host cells. Here we have demonstrated that filoviruses utilize glycosaminoglycans, and more specifically heparan sulfate proteoglycans, for their attachment to host cells. This interaction is mediated by GP and does not require the presence of the mucin domain. Both the degree of sulfation and the structure of the carbohydrate backbone play a role in the interaction with filovirus GPs. This new step of filovirus interaction with host cells can potentially be a new target for antiviral strategies. As such, we were able to inhibit filovirus GP-mediated infection using carrageenan, a broad-spectrum microbicide that mimics heparin, and also using the antiviral dendrimeric peptide SB105-A10, which interacts with heparan sulfate, antagonizing the binding of the virus to cells.


Asunto(s)
Filoviridae/fisiología , Proteoglicanos de Heparán Sulfato/metabolismo , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Acoplamiento Viral , Animales , Línea Celular , Humanos
16.
Arch Virol ; 159(4): 821-30, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24122154

RESUMEN

The International Committee on Taxonomy of Viruses (ICTV) Filoviridae Study Group prepares proposals on the classification and nomenclature of filoviruses to reflect current knowledge or to correct disagreements with the International Code of Virus Classification and Nomenclature (ICVCN). In recent years, filovirus taxonomy has been corrected and updated, but parts of it remain controversial, and several topics remain to be debated. This article summarizes the decisions and discussion of the currently acting ICTV Filoviridae Study Group since its inauguration in January 2012.


Asunto(s)
Clasificación/métodos , Filoviridae/clasificación , Terminología como Asunto , Humanos
17.
Arch Virol ; 159(5): 1229-37, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24190508

RESUMEN

Specific alterations (mutations, deletions, insertions) of virus genomes are crucial for the functional characterization of their regulatory elements and their expression products, as well as a prerequisite for the creation of attenuated viruses that could serve as vaccine candidates. Virus genome tailoring can be performed either by using traditionally cloned genomes as starting materials, followed by site-directed mutagenesis, or by de novo synthesis of modified virus genomes or parts thereof. A systematic nomenclature for such recombinant viruses is necessary to set them apart from wild-type and laboratory-adapted viruses, and to improve communication and collaborations among researchers who may want to use recombinant viruses or create novel viruses based on them. A large group of filovirus experts has recently proposed nomenclatures for natural and laboratory animal-adapted filoviruses that aim to simplify the retrieval of sequence data from electronic databases. Here, this work is extended to include nomenclature for filoviruses obtained in the laboratory via reverse genetics systems. The previously developed template for natural filovirus genetic variant naming, (/)///-, is retained, but we propose to adapt the type of information added to each field for cDNA clone-derived filoviruses. For instance, the full-length designation of an Ebola virus Kikwit variant rescued from a plasmid developed at the US Centers for Disease Control and Prevention could be akin to "Ebola virus H.sapiens-rec/COD/1995/Kikwit-abc1" (with the suffix "rec" identifying the recombinant nature of the virus and "abc1" being a placeholder for any meaningful isolate designator). Such a full-length designation should be used in databases and the methods section of publications. Shortened designations (such as "EBOV H.sap/COD/95/Kik-abc1") and abbreviations (such as "EBOV/Kik-abc1") could be used in the remainder of the text, depending on how critical it is to convey information contained in the full-length name. "EBOV" would suffice if only one EBOV strain/variant/isolate is addressed.


Asunto(s)
Filoviridae/clasificación , Filoviridae/genética , Virus Reordenados/clasificación , Virus Reordenados/genética , Genoma Viral
18.
NPJ Vaccines ; 9(1): 35, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368443

RESUMEN

Zika virus (ZIKV) infection during pregnancy poses significant threats to maternal and fetal health, leading to intrauterine fetal demise and severe developmental malformations that constitute congenital Zika syndrome (CZS). As such, the development of a safe and effective ZIKV vaccine is a critical public health priority. However, the safety and efficacy of such a vaccine during pregnancy remain uncertain. Historically, the conduct of clinical trials in pregnant women has been challenging. Therefore, clinically relevant animal pregnancy models are in high demand for testing vaccine efficacy. We previously reported that a marmoset pregnancy model of ZIKV infection consistently demonstrated vertical transmission from mother to fetus during pregnancy. Using this marmoset model, we also showed that vertical transmission could be prevented by pre-pregnancy vaccination with Zika purified inactivated virus (ZPIV) vaccine. Here, we further examined the efficacy of ZPIV vaccination during pregnancy. Vaccination during pregnancy elicited virus neutralizing antibody responses that were comparable to those elicited by pre-pregnancy vaccination. Vaccination also reduced placental pathology, viral burden and vertical transmission of ZIKV during pregnancy, without causing adverse effects. These results provide key insights into the safety and efficacy of ZPIV vaccination during pregnancy and demonstrate positive effects of vaccination on the reduction of ZIKV infection, an important advance in preparedness for future ZIKV outbreaks.

19.
Sci Transl Med ; 15(699): eabq6517, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37285402

RESUMEN

Zika virus (ZIKV) infection during pregnancy causes severe developmental defects in newborns, termed congenital Zika syndrome (CZS). Factors contributing to a surge in ZIKV-associated CZS are poorly understood. One possibility is that ZIKV may exploit the antibody-dependent enhancement of infection mechanism, mediated by cross-reactive antibodies from prior dengue virus (DENV) infection, which may exacerbate ZIKV infection during pregnancy. In this study, we investigated the impact of prior DENV infection or no DENV infection on ZIKV pathogenesis during pregnancy in a total of four female common marmosets with five or six fetuses per group. The results showed that negative-sense viral RNA copies increased in the placental and fetal tissues of DENV-immune dams but not in DENV-naïve dams. In addition, viral proteins were prevalent in endothelial cells, macrophages, and neonatal Fc receptor-expressing cells in the placental trabeculae and in neuronal cells in the brains of fetuses from DENV-immune dams. DENV-immune marmosets maintained high titers of cross-reactive ZIKV-binding antibodies that were poorly neutralizing, raising the possibility that these antibodies might be involved in the exacerbation of ZIKV infection. These findings need to be verified in a larger study, and the mechanism involved in the exacerbation of ZIKV infection in DENV-immune marmosets needs further investigation. However, the results suggest a potential negative impact of preexisting DENV immunity on subsequent ZIKV infection during pregnancy in vivo.


Asunto(s)
Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Embarazo , Callithrix , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Células Endoteliales , Placenta , Reacciones Cruzadas
20.
Genes Genomics ; 44(12): 1499-1507, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36331778

RESUMEN

BACKGROUND: Ebola virus (EBOV) causes a serious hemorrhagic disease in humans, with a mortality rate of up to 80%. Despite significant achievements in the past decades elucidating the pathogenesis of EBOV, there is still much to be elucidated about the cell type-specific host response and their functional roles during infection. OBJECTIVE: This study aimed to gain insight into cell type-specific host responses to EBOV infection. METHODS: Real-time RT-qPCR analysis was used to identify host transcriptional changes in epithelial Caco-2 cells and endothelial HUVECs by EBOV infection. RESULTS: EBOV efficiently infected to both Caco-2 cells and HUVECs, depending on the time of infection. However, changes in the transcriptional levels of several host cellular genes following viral infection showed significant differences between Caco-2 cells and HUVECs. EBOV infection increases the transcription of TGF-ß1, a key factor in epithelium-to-mesenchyme transition (EMT), only in HUVECs, but not in Caco-2 cells. This upregulation in turn induces the transcription of other EMT signaling molecules such as snail, slug and MMP9, ultimately leading to endothelial-to-mesenchymal transition (EndMT). Furthermore, this EndMT process appears to be associated with increased transcription of stem-cell markers such as Klf4, Sox2 and Oct4. However, most of these transcriptional changes due to EBOV infection did not occur in Caco-2 cells, suggesting that EMT or EndMT by EBOV infection is cell type-specific. CONCLUSION: We propose that EBOV infection induces the expression of TGF-ß1-mediated signals in endothelial HUVECs, resulting in EndMT. This could provide broader information to elucidate the pathogenesis of Ebola virus disease.


Asunto(s)
Transición Epitelial-Mesenquimal , Fiebre Hemorrágica Ebola , Células Endoteliales de la Vena Umbilical Humana , Factor de Crecimiento Transformador beta1 , Humanos , Células CACO-2 , Fiebre Hemorrágica Ebola/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/virología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA