Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biomed Microdevices ; 22(3): 52, 2020 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-32770358

RESUMEN

Although microfluidic micro-electromechanical systems (MEMS) are well suited to investigate the effects of mechanical force on large populations of cells, their high-throughput capabilities cannot be fully leveraged without optimizing the experimental conditions of the fluid and particles flowing through them. Parameters such as flow velocity and particle size are known to affect the trajectories of particles in microfluidic systems and have been studied extensively, but the effects of temperature and buffer viscosity are not as well understood. In this paper, we explored the effects of these parameters on the timing of our own cell-impact device, the µHammer, by first tracking the velocity of polystyrene beads through the device and then visualizing the impact of these beads. Through these assays, we find that the timing of our device is sensitive to changes in the ratio of inertial forces to viscous forces that particles experience while traveling through the device. This sensitivity provides a set of parameters that can serve as a robust framework for optimizing device performance under various experimental conditions, without requiring extensive geometric redesigns. Using these tools, we were able to achieve an effective throughput over 360 beads/s with our device, demonstrating the potential of this framework to improve the consistency of microfluidic systems that rely on precise particle trajectories and timing.


Asunto(s)
Dispositivos Laboratorio en un Chip , Sistemas Microelectromecánicos/instrumentación , Tampones (Química) , Diseño de Equipo , Microesferas , Tamaño de la Partícula , Poliestirenos/química , Temperatura , Viscosidad
2.
J Vis Exp ; (192)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36912520

RESUMEN

Pediatric CNS tumors are responsible for the majority of cancer-related deaths in children and have poor prognoses, despite advancements in chemotherapy and radiotherapy. As many tumors lack efficacious treatments, there is a crucial need to develop more promising therapeutic options, such as immunotherapies; the use of chimeric antigen receptor (CAR) T cell therapy directed against CNS tumors is of particular interest. Cell surface targets such as B7-H3, IL13RA2, and the disialoganglioside GD2 are highly expressed on the surface of several pediatric and adult CNS tumors, raising the opportunity to use CAR T cell therapy against these and other surface targets. To evaluate the repeated locoregional delivery of CAR T cells in preclinical murine models, an indwelling catheter system that recapitulates indwelling catheters currently being used in human clinical trials was established. Unlike stereotactic delivery, the indwelling catheter system allows for repeated dosing without the use of multiple surgeries. This protocol describes the intratumoral placement of a fixed guide cannula that has been used to successfully test serial CAR T cell infusions in orthotopic murine models of pediatric brain tumors. Following orthotopic injection and engraftment of the tumor cells in mice, intratumoral placement of a fixed guide cannula is completed on a stereotactic apparatus and secured with screws and acrylic resin. Treatment cannulas are then inserted through the fixed guide cannula for repeated CAR T cell delivery. Stereotactic placement of the guide cannula can be adjusted to deliver CAR T cells directly into the lateral ventricle or other locations in the brain. This platform offers a reliable mechanism for the preclinical testing of repeated intracranial infusions of CAR T cells and other novel therapeutics for these devastating pediatric tumors.


Asunto(s)
Neoplasias Encefálicas , Receptores Quiméricos de Antígenos , Animales , Humanos , Ratones , Neoplasias Encefálicas/patología , Cánula , Inmunoterapia Adoptiva/métodos , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Neoplasia ; 35: 100846, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36335802

RESUMEN

Pediatric brain tumors are the leading cause of cancer-related death in children in the United States and contribute a disproportionate number of potential years of life lost compared to adult cancers. Moreover, survivors frequently suffer long-term side effects, including secondary cancers. The Children's Brain Tumor Network (CBTN) is a multi-institutional international clinical research consortium created to advance therapeutic development through the collection and rapid distribution of biospecimens and data via open-science research platforms for real-time access and use by the global research community. The CBTN's 32 member institutions utilize a shared regulatory governance architecture at the Children's Hospital of Philadelphia to accelerate and maximize the use of biospecimens and data. As of August 2022, CBTN has enrolled over 4700 subjects, over 1500 parents, and collected over 65,000 biospecimen aliquots for research. Additionally, over 80 preclinical models have been developed from collected tumors. Multi-omic data for over 1000 tumors and germline material are currently available with data generation for > 5000 samples underway. To our knowledge, CBTN provides the largest open-access pediatric brain tumor multi-omic dataset annotated with longitudinal clinical and outcome data, imaging, associated biospecimens, child-parent genomic pedigrees, and in vivo and in vitro preclinical models. Empowered by NIH-supported platforms such as the Kids First Data Resource and the Childhood Cancer Data Initiative, the CBTN continues to expand the resources needed for scientists to accelerate translational impact for improved outcomes and quality of life for children with brain and spinal cord tumors.


Asunto(s)
Neoplasias Encefálicas , Calidad de Vida , Adulto , Humanos , Niño , Neoplasias Encefálicas/terapia
4.
Ann Biomed Eng ; 49(10): 2914-2923, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34472000

RESUMEN

Investigating head responses during hockey-related blunt impacts and hence understanding how to mitigate brain injury risk from such impacts still needs more exploration. This study used the recently developed hockey helmet testing methodology, known as the Hockey Summation of Tests for the Analysis of Risk (Hockey STAR), to collect 672 laboratory helmeted impacts. Brain strains were then calculated from the according 672 simulations using the detailed Global Human Body Models Consortium (GHBMC) finite element head model. Experimentally measured head kinematics and brain strains were used to calculate head/brain injury metrics including peak linear acceleration, peak rotational acceleration, peak rotational velocity, Gadd Severity Index (GSI), Head Injury Criteria (HIC15), Generalized Acceleration Model for Brain Injury Threshold (GAMBIT), Brain Injury Criteria (BrIC), Universal Brain Injury Criterion (UBrIC), Diffuse Axonal Multi-Axis General Equation (DAMAGE), average maximum principal strain (MPS) and cumulative strain damage measure (CSDM). Correlation analysis of kinematics-based and strain-based metrics highlighted the importance of rotational velocity. Injury metrics that use rotational velocity correlated highly to average MPS and CSDM with UBrIC yielding the strongest correlation. In summary, a comprehensive analysis for kinematics-based and strain-based injury metrics was conducted through a hybrid experimental (672 impacts) and computational (672 simulations) approach. The results can provide references for adopting brain injury metrics when using the Hockey STAR approach and guide ice hockey helmet designs that help reduce brain injury risks.


Asunto(s)
Traumatismos Craneocerebrales/fisiopatología , Cabeza/fisiopatología , Hockey/lesiones , Modelos Biológicos , Aceleración , Adulto , Fenómenos Biomecánicos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Análisis de Elementos Finitos , Dispositivos de Protección de la Cabeza , Humanos , Laboratorios , Imagen por Resonancia Magnética , Masculino , Rotación , Equipo Deportivo , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA