Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 15(38): 15665-15674, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37724437

RESUMEN

Gamma photons with an average energy of 1.25 MeV are well-known to generate large amounts of defects in semiconductor electronic devices. Here we investigate the novel effect of gamma radiation on diffusive memristors based on metallic silver nanoparticles dispersed in a dielectric matrix of silica. Our experimental findings show that after exposure to radiation, the memristors and artificial neurons made of them demonstrate much better performance in terms of stable volatile resistive switching and higher spiking frequencies, respectively, compared to the pristine samples. At the same time we observe partial oxidation of silver and reduction of silicon within the switching silica layer. We propose nanoinclusions of reduced silicon distributed across the silica layer to be the backbone for metallic nanoparticles to form conductive filaments, as supported by our theoretical simulations of radiation-induced changes in the diffusion process. Our findings propose a new opportunity to engineer the required characteristics of diffusive memristors in order to emulate biological neurons and develop bio-inspired computational technology.

2.
Sci Rep ; 9(1): 3156, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816265

RESUMEN

The use of voltages to control magnetisation via the inverse magnetostriction effect in piezoelectric/ferromagnet heterostructures holds promise for ultra-low energy information storage technologies. Epitaxial galfenol, an alloy of iron and gallium, has been shown to be a highly suitable material for such devices because it possesses biaxial anisotropy and large magnetostriction. Here we experimentally investigate the properties of galfenol/spacer/galfenol structures in which the compositions of the galfenol layers are varied in order to produce different strengths of the magnetic anisotropy and magnetostriction constants. Based upon these layers, we propose and simulate the operation of an information storage device that can operate as an energy efficient multilevel memory cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA