Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Vet Res ; 17(1): 18, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413373

RESUMEN

BACKGROUND: Mycoplasma bovis causes mastitis, otitis, pneumonia and arthritis in cattle and is a major contributor to bovine respiratory disease complex. Around the year 2000, it emerged as a significant threat to the health of North American bison. Whether healthy bison are carriers of M. bovis and when they were first exposed is not known. To investigate these questions we used a commercially available ELISA that detects antibodies to M. bovis to test 3295 sera collected from 1984 through 2019 from bison in the United States and Canada. RESULTS: We identified moderately to strongly seropositive bison from as long ago as the late 1980s. Average seroprevalence over the past 36 years is similar in the United States and Canada, but country-specific differences are evident when data are sorted by the era of collection. Seroprevalence in the United States during the pre-disease era (1999 and prior) was significantly higher than in Canada, but was significantly lower than in Canada during the years 2000-2019. Considering individual countries, seroprevalence in the United States since the year 2000 dropped significantly as compared to the years 1985-1999. In Canada the trend is reversed, with seroprevalence increasing significantly since the year 2000. ELISA scores for sera collected from free-ranging bison do not differ significantly from scores for sera from more intensively managed animals, regardless of the era in which they were collected. However, seroprevalence among intensively raised Canadian bison has nearly doubled since the year 2000 and average ELISA scores rose significantly. CONCLUSIONS: Our data provide the first evidence that North American bison were exposed to M. bovis many years prior to the emergence of M. bovis-related disease. Patterns of exposure inferred from these results differ in the United States and Canada, depending on the era under consideration. Our data further suggest that M. bovis may colonize healthy bison at a level sufficient to trigger antibody responses but without causing overt disease. These findings provide novel insights as to the history of M. bovis in bison and will be of value in formulating strategies to minimize the impact of mycoplasmosis on bison health and production.


Asunto(s)
Bison , Infecciones por Mycoplasma/veterinaria , Mycoplasma bovis/aislamiento & purificación , Crianza de Animales Domésticos , Animales , Canadá/epidemiología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Infecciones por Mycoplasma/epidemiología , Prevalencia , Estudios Seroepidemiológicos , Estados Unidos/epidemiología
2.
PLoS Biol ; 14(4): e1002448, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27100532

RESUMEN

The One Health initiative is a global effort fostering interdisciplinary collaborations to address challenges in human, animal, and environmental health. While One Health has received considerable press, its benefits remain unclear because its effects have not been quantitatively described. We systematically surveyed the published literature and used social network analysis to measure interdisciplinarity in One Health studies constructing dynamic pathogen transmission models. The number of publications fulfilling our search criteria increased by 14.6% per year, which is faster than growth rates for life sciences as a whole and for most biology subdisciplines. Surveyed publications clustered into three communities: one used by ecologists, one used by veterinarians, and a third diverse-authorship community used by population biologists, mathematicians, epidemiologists, and experts in human health. Overlap between these communities increased through time in terms of author number, diversity of co-author affiliations, and diversity of citations. However, communities continue to differ in the systems studied, questions asked, and methods employed. While the infectious disease research community has made significant progress toward integrating its participating disciplines, some segregation--especially along the veterinary/ecological research interface--remains.


Asunto(s)
Conducta Cooperativa , Edición
3.
Sci Rep ; 14(1): 14199, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902400

RESUMEN

The wild to domestic bird interface is an important nexus for emergence and transmission of highly pathogenic avian influenza (HPAI) viruses. Although the recent incursion of HPAI H5N1 Clade 2.3.4.4b into North America calls for emergency response and planning given the unprecedented scale, readily available data-driven models are lacking. Here, we provide high resolution spatial and temporal transmission risk models for the contiguous United States. Considering virus host ecology, we included weekly species-level wild waterfowl (Anatidae) abundance and endemic low pathogenic avian influenza virus prevalence metrics in combination with number of poultry farms per commodity type and relative biosecurity risks at two spatial scales: 3 km and county-level. Spillover risk varied across the annual cycle of waterfowl migration and some locations exhibited persistent risk throughout the year given higher poultry production. Validation using wild bird introduction events identified by phylogenetic analysis from 2022 to 2023 HPAI poultry outbreaks indicate strong model performance. The modular nature of our approach lends itself to building upon updated datasets under evolving conditions, testing hypothetical scenarios, or customizing results with proprietary data. This research demonstrates an adaptive approach for developing models to inform preparedness and response as novel outbreaks occur, viruses evolve, and additional data become available.


Asunto(s)
Animales Salvajes , Brotes de Enfermedades , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Aves de Corral , Animales , Gripe Aviar/epidemiología , Gripe Aviar/virología , Gripe Aviar/transmisión , Animales Salvajes/virología , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Brotes de Enfermedades/veterinaria , Aves de Corral/virología , Aves/virología , Estados Unidos/epidemiología , Filogenia , Migración Animal
4.
Front Vet Sci ; 10: 1229071, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711433

RESUMEN

Introduction: The 2022-2023 highly pathogenic avian influenza (HPAI) H5N1 outbreak in the United States (U.S.) is the largest and most costly animal health event in U.S. history. Approximately 70% of commercial farms affected during this outbreak have been turkey farms. Methods: We conducted a case-control study to identify potential risk factors for introduction of HPAI virus onto commercial meat turkey operations. Data were collected from 66 case farms and 59 control farms in 12 states. Univariate and multivariable analyses were conducted to compare management and biosecurity factors on case and control farms. Results: Factors associated with increased risk of infection included being in an existing control zone, having both brooders and growers, having toms, seeing wild waterfowl or shorebirds in the closest field, and using rendering for dead bird disposal. Protective factors included having a restroom facility, including portable, available to crews that visit the farm and workers having access and using a shower at least some of the time when entering a specified barn. Discussion: Study results provide a better understanding of risk factors for HPAI infection and can be used to inform prevention and control measures for HPAI on U.S. turkey farms.

5.
Geospat Health ; 15(2)2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33461269

RESUMEN

Comprehensive and spatially accurate poultry population demographic data do not currently exist in the United States; however, these data are critically needed to adequately prepare for, and efficiently respond to and manage disease outbreaks. In response to absence of these data, this study developed a national-level poultry population dataset by using a novel combination of remote sensing and probabilistic modelling methodologies. The Farm Location and Agricultural Production Simulator (FLAPS) (Burdett et al., 2015) was used to provide baseline national-scale data depicting the simulated locations and populations of individual poultry operations. Remote sensing methods (identification using aerial imagery) were used to identify actual locations of buildings having the characteristic size and shape of commercial poultry barns. This approach was applied to 594 U.S. counties with > 100,000 birds in 34 states based on the 2012 U.S. Department of Agriculture (USDA), National Agricultural Statistics Service (NASS), Census of Agriculture (CoA). The two methods were integrated in a hybrid approach to develop an automated machine learning process to locate commercial poultry operations and predict the number and type of poultry for each operation across the coterminous United States. Validation illustrated that the hybrid model had higher locational accuracy and more realistic distribution and density patterns when compared to purely simulated data. The resulting national poultry population dataset has significant potential for application in animal disease spread modelling, surveillance, emergency planning and response, economics, and other fields, providing a versatile asset for further agricultural research.


Asunto(s)
Aves de Corral , Tecnología de Sensores Remotos , Animales , Conjuntos de Datos como Asunto , Brotes de Enfermedades , Gripe Aviar/epidemiología , Enfermedades de las Aves de Corral/epidemiología , Estados Unidos
6.
Prev Vet Med ; 161: 41-49, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30466657

RESUMEN

Foot-and-mouth disease (FMD) is a highly infectious viral disease of cloven-hoofed animals. FMD outbreaks have the potential to cause significant economic consequences, and effective control strategies are needed to minimize the damage to livestock systems and the economy. Although not the predominant route of infection, airborne transmission has been implicated in previous outbreaks. Under favorable weather conditions, airborne spread of FMD can make the rapid containment of an outbreak more difficult. Our objective was to identify seasonal and geographic differences in patterns of conditions favorable to airborne FMD spread in the United States. Data from a national network of surface weather stations were examined for three study years (December 2011-November 2012, December 2012-November 2013, December 2014-November 2015). Weather conditions were found to be most frequently favorable to airborne spread during the winter (December, January, February). Geographically, conditions were most frequently favorable to airborne FMD spread in the upper Midwestern United States, a region where swine and cattle populations are common. Across study years, conditions for airborne FMD spread were more frequently favorable when weather conditions were generally mild with few extremes with respect to temperature and precipitation (e.g., 2014-2015). However, national patterns in risk areas for airborne FMD spread were similar across study years even though the degree of risk differed based on variations in weather patterns among study years. Our findings suggest that airborne transmission could contribute to FMD spread between livestock premises in the event of an outbreak in the coterminous United States, and that some geographic areas are at an increased risk particularly in seasons with conducive weather conditions. To our knowledge, this is the first study to characterize the risk of airborne FMD spread on a national scale in the United States. The findings presented here can be used to enhance preparedness and surveillance activities by identifying specific geographic areas in the United States where airborne spread is most likely to be a risk factor for transmission during an outbreak.


Asunto(s)
Microbiología del Aire , Fiebre Aftosa/epidemiología , Fiebre Aftosa/transmisión , Ganado/virología , Estaciones del Año , Animales , Bovinos , Enfermedades de los Bovinos/transmisión , Geografía , Enfermedades de las Cabras/transmisión , Cabras , Factores de Riesgo , Ovinos , Enfermedades de las Ovejas/transmisión , Análisis Espacial , Porcinos , Enfermedades de los Porcinos/transmisión , Estados Unidos/epidemiología , Tiempo (Meteorología)
7.
Vet Sci ; 5(4)2018 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-30380736

RESUMEN

Diseases that affect both wild and domestic animals can be particularly difficult to prevent, predict, mitigate, and control. Such multi-host diseases can have devastating economic impacts on domestic animal producers and can present significant challenges to wildlife populations, particularly for populations of conservation concern. Few mathematical models exist that capture the complexities of these multi-host pathogens, yet the development of such models would allow us to estimate and compare the potential effectiveness of management actions for mitigating or suppressing disease in wildlife and/or livestock host populations. We conducted a workshop in March 2014 to identify the challenges associated with developing models of pathogen transmission across the wildlife-livestock interface. The development of mathematical models of pathogen transmission at this interface is hampered by the difficulties associated with describing the host-pathogen systems, including: (1) the identity of wildlife hosts, their distributions, and movement patterns; (2) the pathogen transmission pathways between wildlife and domestic animals; (3) the effects of the disease and concomitant mitigation efforts on wild and domestic animal populations; and (4) barriers to communication between sectors. To promote the development of mathematical models of transmission at this interface, we recommend further integration of modern quantitative techniques and improvement of communication among wildlife biologists, mathematical modelers, veterinary medicine professionals, producers, and other stakeholders concerned with the consequences of pathogen transmission at this important, yet poorly understood, interface.

8.
Sci Rep ; 7(1): 13193, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-29038498

RESUMEN

Recent decline of sea ice habitat has coincided with increased use of land by polar bears (Ursus maritimus) from the southern Beaufort Sea (SB), which may alter the risks of exposure to pathogens and contaminants. We assayed blood samples from SB polar bears to assess prior exposure to the pathogens Brucella spp., Toxoplasma gondii, Coxiella burnetii, Francisella tularensis, and Neospora caninum, estimate concentrations of persistent organic pollutants (POPs), and evaluate risk factors associated with exposure to pathogens and POPs. We found that seroprevalence of Brucella spp. and T. gondii antibodies likely increased through time, and provide the first evidence of exposure of polar bears to C. burnetii, N. caninum, and F. tularensis. Additionally, the odds of exposure to T. gondii were greater for bears that used land than for bears that remained on the sea ice during summer and fall, while mean concentrations of the POP chlordane (ΣCHL) were lower for land-based bears. Changes in polar bear behavior brought about by climate-induced modifications to the Arctic marine ecosystem may increase exposure risk to certain pathogens and alter contaminant exposure pathways.


Asunto(s)
Ecosistema , Ursidae/microbiología , Animales , Regiones Árticas , Brucella/inmunología , Brucella/aislamiento & purificación , Coxiella burnetii/inmunología , Coxiella burnetii/aislamiento & purificación , Contaminantes Ambientales/toxicidad , Francisella tularensis/inmunología , Francisella tularensis/aislamiento & purificación , Cubierta de Hielo , Neospora/inmunología , Neospora/aislamiento & purificación , Toxoplasma/inmunología , Toxoplasma/aislamiento & purificación
9.
Avian Dis ; 60(1 Suppl): 132-45, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27309049

RESUMEN

Risk management decisions associated with live poultry movement during a highly pathogenic avian influenza (HPAI) outbreak should be carefully considered. Live turkey movements may pose a risk for disease spread. On the other hand, interruptions in scheduled movements can disrupt business continuity. The Secure Turkey Supply (STS) Plan was developed through an industry-government-academic collaboration to address business continuity concerns that might arise during a HPAI outbreak. STS stakeholders proposed outbreak response measure options that were evaluated through risk assessment. The developed approach relies on 1) diagnostic testing of two pooled samples of swabs taken from dead turkeys immediately before movement via the influenza A matrix gene real-time reverse transcriptase polymerase chain reaction (rRT-PCR) test; 2) enhanced biosecurity measures in combination with a premovement isolation period (PMIP), restricting movement onto the premises for a few days before movement to slaughter; and 3) incorporation of a distance factor from known infected flocks such that exposure via local area spread is unlikely. Daily exposure likelihood estimates from spatial kernels from past HPAI outbreaks were coupled with simulation models of disease spread and active surveillance to evaluate active surveillance protocol options that differ with respect to the number of swabs per pooled sample and the timing of the tests in relation to movement. Simulation model results indicate that active surveillance testing, in combination with strict biosecurity, substantially increased HPAI virus detection probability. When distance from a known infected flock was considered, the overall combined likelihood of moving an infected, undetected turkey flock to slaughter was predicted to be lower at 3 and 5 km. The analysis of different active surveillance protocol options is designed to incorporate flexibility into HPAI emergency response plans.


Asunto(s)
Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Carne/virología , Enfermedades de las Aves de Corral/virología , Pavos/virología , Mataderos , Animales , Brotes de Enfermedades , Inocuidad de los Alimentos , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Gripe Aviar/epidemiología , Enfermedades de las Aves de Corral/epidemiología , Vigilancia en Salud Pública , Medición de Riesgo , Estados Unidos/epidemiología
10.
Prev Vet Med ; 120(2): 131-140, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25944175

RESUMEN

We describe a method for de-identifying point location data used for disease spread modeling to allow data custodians to share data with modeling experts without disclosing individual farm identities. The approach is implemented in an open-source software program that is described and evaluated here. The program allows a data custodian to select a level of de-identification based on the K-anonymity statistic. The program converts a file of true farm locations and attributes into a file appropriate for use in disease spread modeling with the locations randomly modified to prevent re-identification based on location. Important epidemiological relationships such as clustering are preserved to as much as possible to allow modeling similar to those using true identifiable data. The software implementation was verified by visual inspection and basic descriptive spatial analysis of the output. Performance is sufficient to allow de-identification of even large data sets on desktop computers available to any data custodian.


Asunto(s)
Enfermedades de los Animales/transmisión , Anonimización de la Información , Métodos Epidemiológicos/veterinaria , Ganado , Programas Informáticos , Animales
11.
Ecohealth ; 12(3): 528-39, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25791679

RESUMEN

Disease was a listing criterion for the polar bear (Ursus maritimus) as threatened under the Endangered Species Act in 2008; it is therefore important to evaluate the current state of knowledge and identify any information gaps pertaining to diseases in polar bears. We conducted a systematic literature review focused on infectious agents and associated health impacts identified in polar bears. Overall, the majority of reports in free-ranging bears concerned serosurveys or fecal examinations with little to no information on associated health effects. In contrast, most reports documenting illness or pathology referenced captive animals and diseases caused by etiologic agents not representative of exposure opportunities in wild bears. As such, most of the available infectious disease literature has limited utility as a basis for development of future health assessment and management plans. Given that ecological change is a considerable risk facing polar bear populations, future work should focus on cumulative effects of multiple stressors that could impact polar bear population dynamics.


Asunto(s)
Enfermedades Transmisibles/veterinaria , Ursidae , Animales , Animales Salvajes , Ambiente
12.
Sci Total Environ ; 514: 371-8, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25679818

RESUMEN

The meaning of health for wildlife and perspectives on how to assess and measure health, are not well characterized. For wildlife at risk, such as some polar bear (Ursus maritimus) subpopulations, establishing comprehensive monitoring programs that include health status is an emerging need. Environmental changes, especially loss of sea ice habitat, have raised concern about polar bear health. Effective and consistent monitoring of polar bear health requires an unambiguous definition of health. We used the Delphi method of soliciting and interpreting expert knowledge to propose a working definition of polar bear health and to identify current concerns regarding health, challenges in measuring health, and important metrics for monitoring health. The expert opinion elicited through the exercise agreed that polar bear health is defined by characteristics and knowledge at the individual, population, and ecosystem level. The most important threats identified were in decreasing order: climate change, increased nutritional stress, chronic physiological stress, harvest management, increased exposure to contaminants, increased frequency of human interaction, diseases and parasites, and increased exposure to competitors. Fifteen metrics were identified to monitor polar bear health. Of these, indicators of body condition, disease and parasite exposure, contaminant exposure, and reproductive success were ranked as most important. We suggest that a cumulative effects approach to research and monitoring will improve the ability to assess the biological, ecological, and social determinants of polar bear health and provide measurable objectives for conservation goals and priorities and to evaluate progress.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente/métodos , Ursidae/fisiología , Animales , Cambio Climático , Ecosistema , Contaminantes Ambientales , Cubierta de Hielo
13.
Prev Vet Med ; 110(3-4): 510-24, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23398856

RESUMEN

Epidemiologic simulation modeling of highly pathogenic avian influenza (HPAI) outbreaks provides a useful conceptual framework with which to estimate the consequences of HPAI outbreaks and to evaluate disease control strategies. The purposes of this study were to establish detailed and informed input parameters for an epidemiologic simulation model of the H5N1 strain of HPAI among commercial and backyard poultry in the state of South Carolina in the United States using a highly realistic representation of this poultry population; to estimate the consequences of an outbreak of HPAI in this population with a model constructed from these parameters; and to briefly evaluate the sensitivity of model outcomes to several parameters. Parameters describing disease state durations; disease transmission via direct contact, indirect contact, and local-area spread; and disease detection, surveillance, and control were established through consultation with subject matter experts, a review of the current literature, and the use of several computational tools. The stochastic model constructed from these parameters produced simulated outbreaks ranging from 2 to 111 days in duration (median 25 days), during which 1 to 514 flocks were infected (median 28 flocks). Model results were particularly sensitive to the rate of indirect contact that occurs among flocks. The baseline model established in this study can be used in the future to evaluate various control strategies, as a tool for emergency preparedness and response planning, and to assess the costs associated with disease control and the economic consequences of a disease outbreak.


Asunto(s)
Pollos , Subtipo H5N1 del Virus de la Influenza A/fisiología , Gripe Aviar/transmisión , Enfermedades de las Aves de Corral/transmisión , Codorniz , Pavos , Crianza de Animales Domésticos , Animales , Simulación por Computador , Femenino , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología , Gripe Aviar/virología , Masculino , Modelos Teóricos , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , Sensibilidad y Especificidad , South Carolina/epidemiología
14.
Vector Borne Zoonotic Dis ; 12(3): 192-5, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22017469

RESUMEN

The decline in the number of northern fur seal (NFS; Callorhinus ursinus) pups on St. Paul Island, Alaska, has led to multidisciplinary research, including investigation into issues of reproductive health and success. Given the recent identification of Coxiella burnetii in the placenta of two other marine mammal species, NFS placentas were collected from Reef rookery on St. Paul Island, Alaska, during the 2010 pupping season, examined histologically, and tested for C. burnetii using polymerase chain reaction (PCR). Of 146 placentas examined, gram-negative intratrophoblastic bacteria that were positive for C. burnetii on immunohistochemistry were observed in 5 (3%) placentas. Placental infection was usually devoid of associated inflammation or significant ancillary pathology. One hundred nine (75%) of the placentas were positive for C. burnetii on PCR. C. burnetii is globally distributed and persists for long periods in the environment, providing ample opportunity for exposure of many species. The significance of this finding for the declining fur seal population, potential human exposure and infection, and impact on other sympatric marine mammal or terrestrial species is unclear; further investigation into the epidemiology of Coxiella in the marine ecosystem is warranted.


Asunto(s)
Coxiella burnetii/aislamiento & purificación , Lobos Marinos/microbiología , Placenta/microbiología , Complicaciones Infecciosas del Embarazo/veterinaria , Fiebre Q/veterinaria , Alaska/epidemiología , Animales , Coxiella burnetii/genética , ADN Bacteriano/genética , Femenino , Humanos , Islas , Placenta/patología , Embarazo , Complicaciones Infecciosas del Embarazo/epidemiología , Complicaciones Infecciosas del Embarazo/microbiología , Prevalencia , Fiebre Q/epidemiología , Fiebre Q/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA