RESUMEN
Galectin (Gal)-3 is a profibrotic ß-galactoside-binding lectin that plays a key role in the pathogenesis of idiopathic pulmonary fibrosis (IPF) and IPF exacerbations. TD139 is a novel and potent small-molecule inhibitor of Gal-3.A randomised, double-blind, multicentre, placebo-controlled, phase 1/2a study was conducted to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of inhaled TD139 in 36 healthy subjects and 24 patients with IPF. Six dose cohorts of six healthy subjects were evaluated (4:2 TD139:placebo ratio) with single doses of TD139 (0.15-50â mg) and three dose cohorts of eight patients with IPF (5:3 TD139:placebo ratio) with once-daily doses of TD139 (0.3-10â mg) for 14â days.Inhaled TD139 was well tolerated with no significant treatment-related side-effects. TD139 was rapidly absorbed, with mean time taken to reach maximum plasma concentration (C max) values ranging from 0.6 to 3â h and a plasma half-life (T 1/2) of 8â h. The concentration of TD139 in the lung was >567-fold higher than in the blood, with systemic exposure predicting exposure in the target compartment. Gal-3 expression on alveolar macrophages was reduced in the 3 and 10â mg dose groups compared with placebo, with a concentration-dependent inhibition demonstrated. Inhibition of Gal-3 expression in the lung was associated with reductions in plasma biomarkers centrally relevant to IPF pathobiology (platelet-derived growth factor-BB, plasminogen activator inhibitor-1, Gal-3, CCL18 and YKL-40).TD139 is safe and well tolerated in healthy subjects and IPF patients. It was shown to suppress Gal-3 expression on bronchoalveolar lavage macrophages and, in a concerted fashion, decrease plasma biomarkers associated with IPF progression.
Asunto(s)
Galectina 3 , Fibrosis Pulmonar Idiopática , Método Doble Ciego , Humanos , PulmónRESUMEN
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease with poor prognosis and a significant unmet medical need. This study evaluated the safety, pharmacokinetics (PK) and target engagement in the lungs, of GSK3008348, a novel inhaled alpha-v beta-6 (αvß6) integrin inhibitor, in participants with IPF. METHODS: This was a phase 1b, randomised, double-blind (sponsor unblind) study, conducted in the UK (two clinical sites, one imaging unit) between June 2017 and July 2018 (NCT03069989). Participants with a definite or probable diagnosis of IPF received a single nebulised dose of 1000 mcg GSK3008348 or placebo (ratio 5:2) in two dosing periods. In period 1, safety and PK assessments were performed up to 24 h post-dose; in period 2, after a 7-day to 28-day washout, participants underwent a total of three positron emission tomography (PET) scans: baseline, Day 1 (~ 30 min post-dosing) and Day 2 (~ 24 h post-dosing), using a radiolabelled αvß6-specific ligand, [18F]FB-A20FMDV2. The primary endpoint was whole lung volume of distribution (VT), not corrected for air volume, at ~ 30 min post-dose compared with pre-dose. The study success criterion, determined using Bayesian analysis, was a posterior probability (true % reduction in VT > 0%) of ≥80%. RESULTS: Eight participants with IPF were enrolled and seven completed the study. Adjusted posterior median reduction in uncorrected VT at ~ 30 min after GSK3008348 inhalation was 20% (95% CrI: - 9 to 42%). The posterior probability that the true % reduction in VT > 0% was 93%. GSK3008348 was well tolerated with no reports of serious adverse events or clinically significant abnormalities that were attributable to study treatment. PK was successfully characterised showing rapid absorption followed by a multiphasic elimination. CONCLUSIONS: This study demonstrated engagement of the αvß6 integrin target in the lung following nebulised dosing with GSK3008348 to participants with IPF. To the best of our knowledge this is the first time a target-specific PET radioligand has been used to assess target engagement in the lung, not least for an inhaled drug. TRIAL REGISTRATION: clinicaltrials.gov: NCT03069989; date of registration: 3 March 2017.
Asunto(s)
Butiratos/uso terapéutico , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Integrinas/antagonistas & inhibidores , Naftiridinas/uso terapéutico , Pirazoles/uso terapéutico , Pirrolidinas/uso terapéutico , Volumen de Ventilación Pulmonar/efectos de los fármacos , Administración por Inhalación , Anciano , Antígenos de Neoplasias , Teorema de Bayes , Butiratos/administración & dosificación , Butiratos/farmacocinética , Método Doble Ciego , Determinación de Punto Final , Femenino , Humanos , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Masculino , Naftiridinas/administración & dosificación , Naftiridinas/farmacocinética , Nebulizadores y Vaporizadores , Tomografía de Emisión de Positrones , Pirazoles/administración & dosificación , Pirazoles/farmacocinética , Pirrolidinas/administración & dosificación , Pirrolidinas/farmacocinética , Resultado del TratamientoRESUMEN
Phosphatidylinositol 3-kinases (PI3Ks) and mammalian target of rapamycin (mTOR) play a role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Omipalisib (GSK2126458) is a potent inhibitor of PI3K/mTOR.A randomised, placebo-controlled, double-blind, repeat dose escalation, experimental medicine study of omipalisib in subjects with IPF was conducted (NCT01725139) to test safety, tolerability, pharmacokinetics and pharmacodynamics. Omipalisib was dosed at 0.25â mg, 1â mg and 2â mg twice daily for 8â days in four cohorts of four subjects randomised 3:1 to receive omipalisib or placebo (two cohorts received 2â mg twice daily).17 subjects with IPF were enrolled. The most common adverse event was diarrhoea, which was reported by four participants. Dose-related increases in insulin and glucose were observed. Pharmacokinetic analysis demonstrated that exposure in the blood predicts lung exposure. Exposure-dependent inhibition of phosphatidylinositol 3,4,5 trisphosphate and pAKT confirmed target engagement in blood and lungs. 18F-2-fluoro-2-deoxy-d-glucose(FDG)-positron emission tomography/computed tomography scans revealed an exposure-dependent reduction in 18F-FDG uptake in fibrotic areas of the lung, as measured by target-to-background, ratio thus confirming pharmacodynamic activity.This experimental medicine study demonstrates acceptable tolerability of omipalisib in subjects with IPF at exposures for which target engagement was confirmed both systemically and in the lungs.