Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(4): 816-830.e18, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595451

RESUMEN

The temporal order of DNA replication (replication timing [RT]) is highly coupled with genome architecture, but cis-elements regulating either remain elusive. We created a series of CRISPR-mediated deletions and inversions of a pluripotency-associated topologically associating domain (TAD) in mouse ESCs. CTCF-associated domain boundaries were dispensable for RT. CTCF protein depletion weakened most TAD boundaries but had no effect on RT or A/B compartmentalization genome-wide. By contrast, deletion of three intra-TAD CTCF-independent 3D contact sites caused a domain-wide early-to-late RT shift, an A-to-B compartment switch, weakening of TAD architecture, and loss of transcription. The dispensability of TAD boundaries and the necessity of these "early replication control elements" (ERCEs) was validated by deletions and inversions at additional domains. Our results demonstrate that discrete cis-regulatory elements orchestrate domain-wide RT, A/B compartmentalization, TAD architecture, and transcription, revealing fundamental principles linking genome structure and function.


Asunto(s)
Momento de Replicación del ADN/fisiología , Replicación del ADN/genética , Replicación del ADN/fisiología , Animales , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina , ADN/genética , Momento de Replicación del ADN/genética , Células Madre Embrionarias , Elementos de Facilitación Genéticos/genética , Mamíferos/genética , Mamíferos/metabolismo , Ratones , Proteínas Represoras/metabolismo , Análisis Espacio-Temporal
2.
Hum Mol Genet ; 32(6): 934-947, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36219176

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Its complex pathogenesis and phenotypic heterogeneity hinder therapeutic development and early diagnosis. Altered RNA metabolism is a recurrent pathophysiologic theme, including distinct microRNA (miRNA) profiles in ALS tissues. We profiled miRNAs in accessible biosamples, including skin fibroblasts and whole blood and compared them in age- and sex-matched healthy controls versus ALS participants with and without repeat expansions to chromosome 9 open reading frame 72 (C9orf72; C9-ALS and nonC9-ALS), the most frequent ALS mutation. We identified unique and shared profiles of differential miRNA (DmiRNA) levels in each C9-ALS and nonC9-ALS tissues versus controls. Fibroblast DmiRNAs were validated by quantitative real-time PCR and their target mRNAs by 5-bromouridine and 5-bromouridine-chase sequencing. We also performed pathway analysis to infer biological meaning, revealing anticipated, tissue-specific pathways and pathways previously linked to ALS, as well as novel pathways that could inform future research directions. Overall, we report a comprehensive study of a miRNA profile dataset from C9-ALS and nonC9-ALS participants across two accessible biosamples, providing evidence of dysregulated miRNAs in ALS and possible targets of interest. Distinct miRNA patterns in accessible tissues may also be leveraged to distinguish ALS participants from healthy controls for earlier diagnosis. Future directions may look at potential correlations of miRNA profiles with clinical parameters.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , MicroARNs , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/patología , MicroARNs/genética , MicroARNs/metabolismo , Demencia Frontotemporal/genética , Mutación
3.
Int J Cancer ; 153(3): 552-570, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37140208

RESUMEN

Although KMT2D, also known as MLL2, is known to play an essential role in development, differentiation, and tumor suppression, its role in pancreatic cancer development is not well understood. Here, we discovered a novel signaling axis mediated by KMT2D, which links TGF-ß to the activin A pathway. We found that TGF-ß upregulates a microRNA, miR-147b, which in turn leads to post-transcriptional silencing of KMT2D. Loss of KMT2D induces the expression and secretion of activin A, which activates a noncanonical p38 MAPK-mediated pathway to modulate cancer cell plasticity, promote a mesenchymal phenotype, and enhance tumor invasion and metastasis in mice. We observed a decreased KMT2D expression in human primary and metastatic pancreatic cancer. Furthermore, inhibition or knockdown of activin A reversed the protumoral role of KMT2D loss. These findings support a tumor-suppressive role of KMT2D in pancreatic cancer and identify miR-147b and activin A as novel therapeutic targets.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Plasticidad de la Célula , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/patología , Factor de Crecimiento Transformador beta/metabolismo , Activinas/genética , Neoplasias Pancreáticas
4.
Cell Commun Signal ; 21(1): 15, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36691073

RESUMEN

Grainyhead like 2 (GRHL2) is an essential transcription factor for development and function of epithelial tissues. It has dual roles in cancer by supporting tumor growth while suppressing epithelial to mesenchymal transitions (EMT). GRHL2 cooperates with androgen and estrogen receptors (ER) to regulate gene expression. We explore genome wide GRHL2 binding sites conserved in three ER⍺/GRHL2 positive luminal breast cancer cell lines by ChIP-Seq. Interaction with the ER⍺/FOXA1/GATA3 complex is observed, however, only for a minor fraction of conserved GRHL2 peaks. We determine genome wide transcriptional dynamics in response to loss of GRHL2 by nascent RNA Bru-seq using an MCF7 conditional knockout model. Integration of ChIP- and Bru-seq pinpoints candidate direct GRHL2 target genes in luminal breast cancer. Multiple connections between GRHL2 and proliferation are uncovered, including transcriptional activation of ETS and E2F transcription factors. Among EMT-related genes, direct regulation of CLDN4 is corroborated but several targets identified in other cells (including CDH1 and ZEB1) are ruled out by both ChIP- and Bru-seq as being directly controlled by GRHL2 in luminal breast cancer cells. Gene clusters correlating positively (including known GRHL2 targets such as ErbB3, CLDN4/7) or negatively (including TGFB1 and TGFBR2) with GRHL2 in the MCF7 knockout model, display similar correlation with GRHL2 in ER positive as well as ER negative breast cancer patients. Altogether, this study uncovers gene sets regulated directly or indirectly by GRHL2 in luminal breast cancer, identifies novel GRHL2-regulated genes, and points to distinct GRHL2 regulation of EMT in luminal breast cancer cells. Video Abstract.


Asunto(s)
Neoplasias de la Mama , Proteínas de Unión al ADN , Humanos , Femenino , Proteínas de Unión al ADN/metabolismo , Neoplasias de la Mama/patología , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
5.
RNA ; 26(11): 1680-1703, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32753408

RESUMEN

The human PUF-family proteins, PUM1 and PUM2, posttranscriptionally regulate gene expression by binding to a PUM recognition element (PRE) in the 3'-UTR of target mRNAs. Hundreds of PUM1/2 targets have been identified from changes in steady-state RNA levels; however, prior studies could not differentiate between the contributions of changes in transcription and RNA decay rates. We applied metabolic labeling to measure changes in RNA turnover in response to depletion of PUM1/2, showing that human PUM proteins regulate expression almost exclusively by changing RNA stability. We also applied an in vitro selection workflow to precisely identify the binding preferences of PUM1 and PUM2. By integrating our results with prior knowledge, we developed a "rulebook" of key contextual features that differentiate functional versus nonfunctional PREs, allowing us to train machine learning models that accurately predict the functional regulation of RNA targets by the human PUM proteins.


Asunto(s)
ARN Mensajero/química , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3' , Regulación de la Expresión Génica , Células HEK293 , Humanos , Aprendizaje Automático , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , Secuenciación Completa del Genoma
6.
Proc Natl Acad Sci U S A ; 112(11): E1307-16, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25737553

RESUMEN

The synthesis and processing of mRNA, from transcription to translation initiation, often requires splicing of intragenic material. The final mRNA composition varies based on proteins that modulate splice site selection. EWS-FLI1 is an Ewing sarcoma (ES) oncoprotein with an interactome that we demonstrate to have multiple partners in spliceosomal complexes. We evaluate the effect of EWS-FLI1 on posttranscriptional gene regulation using both exon array and RNA-seq. Genes that potentially regulate oncogenesis, including CLK1, CASP3, PPFIBP1, and TERT, validate as alternatively spliced by EWS-FLI1. In a CLIP-seq experiment, we find that EWS-FLI1 RNA-binding motifs most frequently occur adjacent to intron-exon boundaries. EWS-FLI1 also alters splicing by directly binding to known splicing factors including DDX5, hnRNP K, and PRPF6. Reduction of EWS-FLI1 produces an isoform of γ-TERT that has increased telomerase activity compared with wild-type (WT) TERT. The small molecule YK-4-279 is an inhibitor of EWS-FLI1 oncogenic function that disrupts specific protein interactions, including helicases DDX5 and RNA helicase A (RHA) that alters RNA-splicing ratios. As such, YK-4-279 validates the splicing mechanism of EWS-FLI1, showing alternatively spliced gene patterns that significantly overlap with EWS-FLI1 reduction and WT human mesenchymal stem cells (hMSC). Exon array analysis of 75 ES patient samples shows similar isoform expression patterns to cell line models expressing EWS-FLI1, supporting the clinical relevance of our findings. These experiments establish systemic alternative splicing as an oncogenic process modulated by EWS-FLI1. EWS-FLI1 modulation of mRNA splicing may provide insight into the contribution of splicing toward oncogenesis, and, reciprocally, EWS-FLI1 interactions with splicing proteins may inform the splicing code.


Asunto(s)
Empalme Alternativo/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteína EWS de Unión a ARN/metabolismo , Transducción de Señal/genética , Empalme Alternativo/efectos de los fármacos , Secuencia de Bases , Línea Celular Tumoral , Exones/genética , Humanos , Indoles , Intrones/genética , Proteínas de Fusión Oncogénica/genética , Unión Proteica/efectos de los fármacos , Isoformas de Proteínas/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Procesamiento Postranscripcional del ARN/efectos de los fármacos , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína EWS de Unión a ARN/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/patología , Transducción de Señal/efectos de los fármacos , Empalmosomas/efectos de los fármacos , Empalmosomas/metabolismo , Telomerasa/metabolismo
7.
Genome Res ; 24(6): 896-905, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24714810

RESUMEN

The rate of transcription elongation plays an important role in the timing of expression of full-length transcripts as well as in the regulation of alternative splicing. In this study, we coupled Bru-seq technology with 5,6-dichlorobenzimidazole 1-ß-D-ribofuranoside (DRB) to estimate the elongation rates of over 2000 individual genes in human cells. This technique, BruDRB-seq, revealed gene-specific differences in elongation rates with a median rate of around 1.5 kb/min. We found that genes with rapid elongation rates showed higher densities of H3K79me2 and H4K20me1 histone marks compared to slower elongating genes. Furthermore, high elongation rates had a positive correlation with gene length, low complexity DNA sequence, and distance from the nearest active transcription unit. Features that negatively correlated with elongation rate included the density of exons, long terminal repeats, GC content of the gene, and DNA methylation density in the bodies of genes. Our results suggest that some static gene features influence transcription elongation rates and that cells may alter elongation rates by epigenetic regulation. The BruDRB-seq technique offers new opportunities to interrogate mechanisms of regulation of transcription elongation.


Asunto(s)
Epigénesis Genética , Genoma Humano , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Composición de Base , Metilación de ADN , Exones , Histonas/genética , Histonas/metabolismo , Humanos , Células MCF-7 , ARN Polimerasa II/genética , Secuencias Repetidas Terminales
8.
Nucleic Acids Res ; 43(5): 2744-56, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25722371

RESUMEN

The kinetics of DNA repair and RNA synthesis recovery in human cells following UV-irradiation were assessed using nascent RNA Bru-seq and quantitative long PCR. It was found that UV light inhibited transcription elongation and that recovery of RNA synthesis occurred as a wave in the 5'-3' direction with slow recovery and TC-NER at the 3' end of long genes. RNA synthesis resumed fully at the 3'-end of genes after a 24 h recovery in wild-type fibroblasts, but not in cells deficient in transcription-coupled nucleotide excision repair (TC-NER) or global genomic NER (GG-NER). Different transcription recovery profiles were found for individual genes but these differences did not fully correlate to differences in DNA repair of these genes. Our study gives the first genome-wide view of how UV-induced lesions affect transcription and how the recovery of RNA synthesis of large genes are particularly delayed by the apparent lack of resumption of transcription by arrested polymerases.


Asunto(s)
Reparación del ADN , Fibroblastos/efectos de la radiación , ARN/genética , Transcripción Genética/efectos de la radiación , Rayos Ultravioleta , Células Cultivadas , Niño , Preescolar , ADN/genética , ADN/metabolismo , Daño del ADN , Replicación del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Masculino , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/metabolismo , Factores de Tiempo , Transcriptoma/efectos de la radiación
9.
J Biol Chem ; 290(10): 6376-86, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25596527

RESUMEN

The glucose transporter GLUT4 facilitates insulin-stimulated glucose uptake in peripheral tissues including adipose, muscle, and heart. GLUT4 function is impaired in obesity and type 2 diabetes leading to hyperglycemia and an increased risk of cardiovascular disease and neuropathy. To better understand the regulation of GLUT4 function, a targeted siRNA screen was performed and led to the discovery that ZFP407 regulates insulin-stimulated glucose uptake in adipocytes. The decrease in insulin-stimulated glucose uptake due to ZFP407 deficiency was attributed to a reduction in GLUT4 mRNA and protein levels. The decrease in GLUT4 was due to both decreased transcription of Glut4 mRNA and decreased efficiency of Glut4 pre-mRNA splicing. Interestingly, ZFP407 coordinately regulated this decrease in transcription with an increase in the stability of Glut4 mRNA, resulting in opposing effects on steady-state Glut4 mRNA levels. More broadly, transcriptome analysis revealed that ZFP407 regulates many peroxisome proliferator-activated receptor (PPAR) γ target genes beyond Glut4. ZFP407 was required for the PPARγ agonist rosiglitazone to increase Glut4 expression, but was not sufficient to increase expression of a PPARγ target gene reporter construct. However, ZFP407 and PPARγ co-overexpression synergistically activated a PPARγ reporter construct beyond the level of PPARγ alone. Thus, ZFP407 may represent a new modulator of the PPARγ signaling pathway.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucosa de Tipo 4/biosíntesis , Glucosa/metabolismo , Insulina/metabolismo , Factores de Transcripción/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Adipocitos/patología , Animales , Proteínas de Unión al ADN/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Regulación de la Expresión Génica/genética , Transportador de Glucosa de Tipo 4/genética , Humanos , Ratones , PPAR gamma/biosíntesis , ARN Mensajero/biosíntesis , Transducción de Señal/genética , Factores de Transcripción/genética
10.
Proc Natl Acad Sci U S A ; 110(6): 2240-5, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23345452

RESUMEN

Steady-state gene expression is a coordination of synthesis and decay of RNA through epigenetic regulation, transcription factors, micro RNAs (miRNAs), and RNA-binding proteins. Here, we present bromouride labeling and sequencing (Bru-Seq) and bromouridine pulse-chase and sequencing (BruChase-Seq) to assess genome-wide changes to RNA synthesis and stability in human fibroblasts at homeostasis and after exposure to the proinflammatory tumor necrosis factor (TNF). The inflammatory response in human cells involves rapid and dramatic changes in gene expression, and the Bru-Seq and BruChase-Seq techniques revealed a coordinated and complex regulation of gene expression both at the transcriptional and posttranscriptional levels. The combinatory analysis of both RNA synthesis and stability using Bru-Seq and BruChase-Seq allows for a much deeper understanding of mechanisms of gene regulation than afforded by the analysis of steady-state total RNA and should be useful in many biological settings.


Asunto(s)
Inflamación/genética , Inflamación/metabolismo , Estabilidad del ARN , ARN/biosíntesis , ARN/genética , Bromodesoxiuridina/metabolismo , Línea Celular , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Genoma Humano , Humanos , Inflamación/etiología , Intrones , ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mitocondrial , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Transcriptoma , Factor de Necrosis Tumoral alfa/farmacología
11.
Methods ; 67(1): 45-54, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23973811

RESUMEN

Gene expression studies commonly examine total cellular RNA, which only provides information about its steady-state pool of RNA. It remains unclear whether differences in the steady-state reflects variable rates of transcription or RNA degradation. To specifically monitor RNA synthesis and degradation genome-wide, we developed Bru-Seq and BruChase-Seq. These assays are based on metabolic pulse-chase labeling of RNA using bromouridine (Bru). In Bru-Seq, recently labeled RNAs are sequenced to reveal spans of nascent transcription in the genome. In BruChase-Seq, cells are chased in uridine for different periods of time following Bru-labeling, allowing for the isolation of RNA populations of specific ages. Here we describe these methodologies in detail and highlight their usefulness in assessing RNA synthesis and stability as well as splicing kinetics with examples of specific genes from different human cell lines.


Asunto(s)
ARN Mensajero/biosíntesis , Uridina/análogos & derivados , Animales , Bromouracilo/análogos & derivados , Codón sin Sentido , ADN Complementario/genética , Mutación del Sistema de Lectura , Genoma Humano , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Células K562 , Cinética , Anotación de Secuencia Molecular , Empalme del ARN , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Análisis de Secuencia de ARN , Coloración y Etiquetado , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Uridina/química
12.
bioRxiv ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38645116

RESUMEN

Arising as co-products of canonical gene expression, transcription-associated lincRNAs, such as promoter upstream transcripts (PROMPTs), enhancer RNAs (eRNAs), and readthrough (RT) transcripts, are often regarded as byproducts of transcription, although they may be important for the expression of nearby genes. We identified regions of nascent expression of these lincRNA in 16 human cell lines using Bru-seq techniques, and found distinctly regulated patterns of PROMPT, eRNA, and RT transcription using the diverse biochemical approaches in the ENCODE4 deeply profiled cell lines collection. Transcription of these lincRNAs was influenced by sequence-specific features and the local or 3D chromatin landscape. However, these sequence and chromatin features do not describe the full spectrum of lincRNA expression variability we identify, highlighting the complexity of their regulation. This may suggest that transcription-associated lincRNAs are not merely byproducts, but rather that the transcript itself, or the act of its transcription, is important for genomic function.

13.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915566

RESUMEN

Steady-state levels of RNA transcripts are controlled by their rates of synthesis and degradation. Here we used nascent RNA Bru-seq and BruChase-seq to profile RNA dynamics across 16 human cell lines as part of ENCODE4 Deeply Profiled Cell Lines collection. We show that RNA turnover dynamics differ widely between transcripts of different genes and between different classes of RNA. Gene set enrichment analysis (GSEA) revealed that transcripts encoding proteins belonging to the same pathway often show similar turnover dynamics. Furthermore, transcript isoforms show distinct dynamics suggesting that RNA turnover is important in regulating mRNA isoform choice. Finally, splicing across newly made transcripts appears to be cooperative with either all or none type splicing. These data sets generated as part of ENCODE4 illustrate the intricate and coordinated regulation of RNA dynamics in controlling gene expression to allow for the precise coordination of cellular functions.

14.
iScience ; 25(9): 105030, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36111258

RESUMEN

The cyclin-dependent kinase CDK12 has garnered interest as a cancer therapeutic target as DNA damage response genes are particularly suppressed by loss of CDK12 activity. In this study, we assessed the acute effects of CDK12 inhibition on transcription and RNA processing using nascent RNA Bru-seq and BruChase-seq. Acute transcriptional changes were overall small after CDK12 inhibition but over 600 genes showed intragenic premature termination, including DNA repair and cell cycle genes. Furthermore, many genes showed reduced transcriptional readthrough past the end of genes in the absence of CDK12 activity. RNA turnover was dramatically affected by CDK12 inhibition and importantly, caused increased degradation of many transcripts from DNA damage response genes. We also show that co-transcriptional splicing was suppressed by CDK12 inhibition. Taken together, these studies reveal the roles of CDK12 in regulating transcription elongation, transcription termination, co-transcriptional splicing, and RNA turnover.

15.
Curr Biol ; 32(12): 2581-2595.e6, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35580604

RESUMEN

Autophagy is a conserved, multi-step process of capturing proteolytic cargo in autophagosomes for lysosome degradation. The capacity to remove toxic proteins that accumulate in neurodegenerative disorders attests to the disease-modifying potential of the autophagy pathway. However, neurons respond only marginally to conventional methods for inducing autophagy, limiting efforts to develop therapeutic autophagy modulators for neurodegenerative diseases. The determinants underlying poor autophagy induction in neurons and the degree to which neurons and other cell types are differentially sensitive to autophagy stimuli are incompletely defined. Accordingly, we sampled nascent transcript synthesis and stabilities in fibroblasts, induced pluripotent stem cells (iPSCs), and iPSC-derived neurons (iNeurons), thereby uncovering a neuron-specific stability of transcripts encoding myotubularin-related phosphatase 5 (MTMR5). MTMR5 is an autophagy suppressor that acts with its binding partner, MTMR2, to dephosphorylate phosphoinositides critical for autophagy initiation and autophagosome maturation. We found that MTMR5 is necessary and sufficient to suppress autophagy in iNeurons and undifferentiated iPSCs. Using optical pulse labeling to visualize the turnover of endogenously encoded proteins in live cells, we observed that knockdown of MTMR5 or MTMR2, but not the unrelated phosphatase MTMR9, significantly enhances neuronal degradation of TDP-43, an autophagy substrate implicated in several neurodegenerative diseases. Our findings thus establish a regulatory mechanism of autophagy intrinsic to neurons and targetable for clearing disease-related proteins in a cell-type-specific manner. In so doing, our results not only unravel novel aspects of neuronal biology and proteostasis but also elucidate a strategy for modulating neuronal autophagy that could be of high therapeutic potential for multiple neurodegenerative diseases.


Asunto(s)
Autofagosomas , Proteínas Tirosina Fosfatasas no Receptoras , Autofagosomas/metabolismo , Autofagia/genética , Neuronas/fisiología , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo
16.
Cell Mol Gastroenterol Hepatol ; 13(2): 643-667, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34583087

RESUMEN

BACKGROUND & AIMS: Inactivating mutations of KDM6A, a histone demethylase, were frequently found in pancreatic ductal adenocarcinoma (PDAC). We investigated the role of KDM6A (lysine demethylase 6A) in PDAC development. METHODS: We performed a pancreatic tissue microarray analysis of KDM6A protein levels. We used human PDAC cell lines for KDM6A knockout and knockdown experiments. We performed bromouridine sequencing analysis to elucidate the effects of KDM6A loss on global transcription. We performed studies with Ptf1aCre; LSL-KrasG12D; Trp53R172H/+; Kdm6afl/fl or fl/Y, Ptf1aCre; Kdm6afl/fl or fl/Y, and orthotopic xenograft mice to investigate the impacts of Kdm6a deficiency on pancreatic tumorigenesis and pancreatitis. RESULTS: Loss of KDM6A was associated with metastasis in PDAC patients. Bromouridine sequencing analysis showed up-regulation of the epithelial-mesenchymal transition pathway in PDAC cells deficient in KDM6A. Loss of KDM6A promoted mesenchymal morphology, migration, and invasion in PDAC cells in vitro. Mechanistically, activin A and subsequent p38 activation likely mediated the role of KDM6A loss. Inhibiting either activin A or p38 reversed the effect. Pancreas-specific Kdm6a-knockout mice pancreata showed accelerated PDAC progression, developed a more aggressive undifferentiated type of PDAC, and increased metastases in the background of Kras and p53 mutations. Kdm6a-deficient pancreata in a pancreatitis model had a delayed recovery with increased PDAC precursor lesions compared with wild-type pancreata. CONCLUSIONS: Loss of KDM6A accelerates PDAC progression and metastasis, most likely by a noncanonical p38-dependent activin A pathway. KDM6A also promotes pancreatic tissue recovery from pancreatitis. Activin A might be used as a therapeutic target for KDM6A-deficient PDACs.


Asunto(s)
Plasticidad de la Célula , Neoplasias Pancreáticas , Activinas/metabolismo , Animales , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Ratones , Páncreas/patología , Neoplasias Pancreáticas/patología
17.
Cells ; 11(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36497055

RESUMEN

Cancer risk after ionizing radiation (IR) is assumed to be linear with the dose; however, for low doses, definite evidence is lacking. Here, using temporal multi-omic systems analyses after a low (LD; 0.1 Gy) or a high (HD; 1 Gy) dose of X-rays, we show that, although the DNA damage response (DDR) displayed dose proportionality, many other molecular and cellular responses did not. Phosphoproteomics uncovered a novel mode of phospho-signaling via S12-PPP1R7, and large-scale dephosphorylation events that regulate mitotic exit control in undamaged cells and the G2/M checkpoint upon IR in a dose-dependent manner. The phosphoproteomics of irradiated DNA double-strand breaks (DSBs) repair-deficient cells unveiled extended phospho-signaling duration in either a dose-dependent (DDR signaling) or independent (mTOR-ERK-MAPK signaling) manner without affecting signal magnitude. Nascent transcriptomics revealed the transcriptional activation of genes involved in NRF2-regulated antioxidant defense, redox-sensitive ERK-MAPK signaling, glycolysis and mitochondrial function after LD, suggesting a prominent role for reactive oxygen species (ROS) in molecular and cellular responses to LD exposure, whereas DDR genes were prominently activated after HD. However, how and to what extent the observed dose-dependent differences in molecular and cellular responses may impact cancer development remain unclear, as the induction of chromosomal damage was found to be dose-proportional (10-200 mGy).


Asunto(s)
Roturas del ADN de Doble Cadena , Radiación Ionizante , Puntos de Control de la Fase G2 del Ciclo Celular , Especies Reactivas de Oxígeno , Transducción de Señal
18.
Nat Commun ; 12(1): 3835, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158510

RESUMEN

Transcription restart after a genotoxic challenge is a fundamental yet poorly understood process. Here, we dissect the interplay between transcription and chromatin restoration after DNA damage by focusing on the human histone chaperone complex HIRA, which is required for transcription recovery post UV. We demonstrate that HIRA is recruited to UV-damaged chromatin via the ubiquitin-dependent segregase VCP to deposit new H3.3 histones. However, this local activity of HIRA is dispensable for transcription recovery. Instead, we reveal a genome-wide function of HIRA in transcription restart that is independent of new H3.3 and not restricted to UV-damaged loci. HIRA coordinates with ASF1B to control transcription restart by two independent pathways: by stabilising the associated subunit UBN2 and by reducing the expression of the transcription repressor ATF3. Thus, HIRA primes UV-damaged chromatin for transcription restart at least in part by relieving transcription inhibition rather than by depositing new H3.3 as an activating bookmark.


Asunto(s)
Proteínas de Ciclo Celular/genética , Daño del ADN , Chaperonas de Histonas/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Transcripción Genética , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Células Cultivadas , Cromatina/genética , Cromatina/metabolismo , Cromatina/efectos de la radiación , Reparación del ADN , Células HeLa , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Humanos , Factores de Transcripción/metabolismo , Rayos Ultravioleta , Proteína que Contiene Valosina/genética , Proteína que Contiene Valosina/metabolismo
19.
Nat Commun ; 12(1): 1342, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637760

RESUMEN

Bulky DNA lesions in transcribed strands block RNA polymerase II (RNAPII) elongation and induce a genome-wide transcriptional arrest. The transcription-coupled repair (TCR) pathway efficiently removes transcription-blocking DNA lesions, but how transcription is restored in the genome following DNA repair remains unresolved. Here, we find that the TCR-specific CSB protein loads the PAF1 complex (PAF1C) onto RNAPII in promoter-proximal regions in response to DNA damage. Although dispensable for TCR-mediated repair, PAF1C is essential for transcription recovery after UV irradiation. We find that PAF1C promotes RNAPII pause release in promoter-proximal regions and subsequently acts as a processivity factor that stimulates transcription elongation throughout genes. Our findings expose the molecular basis for a non-canonical PAF1C-dependent pathway that restores transcription throughout the human genome after genotoxic stress.


Asunto(s)
Daño del ADN/fisiología , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN/fisiología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Factores de Transcripción/metabolismo , Núcleo Celular , ADN/efectos de la radiación , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/genética , Mapas de Interacción de Proteínas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Rayos Ultravioleta
20.
NAR Genom Bioinform ; 2(1): lqz014, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31709421

RESUMEN

MicroRNAs (miRNAs) are key contributors to gene regulatory networks. Because miRNAs are processed from RNA polymerase II transcripts, insight into miRNA regulation requires a comprehensive understanding of the regulation of primary miRNA transcripts. We used Bru-seq nascent RNA sequencing and hidden Markov model segmentation to map primary miRNA transcription units (TUs) across 32 human cell lines, allowing us to describe TUs encompassing 1443 miRNAs from miRBase and 438 from MirGeneDB. We identified TUs for 61 miRNAs with an unknown CAGE TSS signal for MirGeneDB miRNAs. Many primary transcripts containing miRNA sequences failed to generate mature miRNAs, suggesting that miRNA biosynthesis is under both transcriptional and post-transcriptional control. In addition to constitutive and cell-type specific TU expression regulated by differential promoter usage, miRNA synthesis can be regulated by transcription past polyadenylation sites (transcriptional read through) and promoter divergent transcription (PROMPTs). We identified 197 miRNA TUs with novel promoters, 97 with transcriptional read-throughs and 3 miRNA TUs that resemble PROMPTs in at least one cell line. The miRNA TU annotation data resource described here reveals a greater complexity in miRNA regulation than previously known and provides a framework for identifying cell-type specific differences in miRNA transcription in cancer and cell transition states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA