Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(11): e2214968120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897977

RESUMEN

Wheat yellow mosaic virus (WYMV) is a pathogen transmitted into its host's roots by the soil-borne vector Polymyxa graminis. Ym1 and Ym2 genes protect the host from the significant yield losses caused by the virus, but the mechanistic basis of these resistance genes remains poorly understood. Here, it has been shown that Ym1 and Ym2 act within the root either by hindering the initial movement of WYMV from the vector into the root and/or by suppressing viral multiplication. A mechanical inoculation experiment on the leaf revealed that the presence of Ym1 reduced viral infection incidence, rather than viral titer, while that of Ym2 was ineffective in the leaf. To understand the basis of the root specificity of the Ym2 product, the gene was isolated from bread wheat using a positional cloning approach. The candidate gene encodes a CC-NBS-LRR protein and it correlated allelic variation with respect to its sequence with the host's disease response. Ym2 (B37500) and its paralog (B35800) are found in the near-relatives, respectively, Aegilops sharonensis and Aegilops speltoides (a close relative of the donor of bread wheat's B genome), while both sequences, in a concatenated state, are present in several accessions of the latter species. Structural diversity in Ym2 has been generated via translocation and recombination between the two genes and enhanced by the formation of a chimeric gene resulting from an intralocus recombination event. The analysis has revealed how the Ym2 region has evolved during the polyploidization events leading to the creation of cultivated wheat.


Asunto(s)
Aegilops , Triticum , Aegilops/genética , Aegilops/metabolismo , Triticum/genética , Triticum/metabolismo , Triticum/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/virología , Clonación Molecular , Transcripción Genética , Filogenia , Enfermedades de las Plantas
2.
Theor Appl Genet ; 137(4): 88, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532180

RESUMEN

KEY MESSAGE: A bread wheat panel reveals rich genetic diversity in Turkish, Pakistani and Iranian landraces and novel resistance loci to diverse powdery mildew isolates via subsetting approaches in association studies. Wheat breeding for disease resistance relies on the availability and use of diverse genetic resources. More than 800,000 wheat accessions are globally conserved in gene banks, but they are mostly uncharacterized for the presence of resistance genes and their potential for agriculture. Based on the selective reduction of previously assembled collections for allele mining for disease resistance, we assembled a trait-customized panel of 755 geographically diverse bread wheat accessions with a focus on landraces, called the LandracePLUS panel. Population structure analysis of this panel based on the TaBW35K SNP array revealed an increased genetic diversity compared to 632 landraces genotyped in an earlier study and 17 high-quality sequenced wheat accessions. The additional genetic diversity found here mostly originated from Turkish, Iranian and Pakistani landraces. We characterized the LandracePLUS panel for resistance to ten diverse isolates of the fungal pathogen powdery mildew. Performing genome-wide association studies and dividing the panel further by a targeted subsetting approach for accessions of distinct geographical origin, we detected several known and already cloned genes, including the Pm2a gene. In addition, we identified 22 putatively novel powdery mildew resistance loci that represent useful sources for resistance breeding and for research on the mildew-wheat pathosystem. Our study shows the value of assembling trait-customized collections and utilizing a diverse range of pathogen races to detect novel loci. It further highlights the importance of integrating landraces of different geographical origins into future diversity studies.


Asunto(s)
Resistencia a la Enfermedad , Triticum , Resistencia a la Enfermedad/genética , Triticum/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Pan , Irán , Variación Genética , Enfermedades de las Plantas/genética
3.
Plant J ; 96(6): 1148-1159, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30238531

RESUMEN

The reference genome sequence of wheat 'Chinese Spring' (CS) is now available (IWGSC RefSeq v1.0), but the core sequences defining the nucleolar organizer regions (NORs) have not been characterized. We estimated that the total copy number of the rDNA units in the wheat genome is 11 160, of which 30.5%, 60.9% and 8.6% are located on Nor-B1 (1B), Nor-B2 (6B) and other NORs, respectively. The total length of the NORs is estimated to be 100 Mb, corresponding to approximately 10% of the unassembled portion of the genome not represented in RefSeq v1.0. Four subtypes (S1-S4) of the rDNA units were identified based on differences within the 3' external transcribed spacer regions in Nor-B1 and Nor-B2, and quantitative PCR indicated locus-specific variation in rDNA subtype contents. Expression analyses of rDNA subtypes revealed that S1 was predominantly expressed and S2 weakly expressed, in contrast to the relative abundance of rDNA subtypes in the wheat genome. These results suggest a regulation mechanism of differential rDNA expression based on sequence differences. S3 expression increased in the ditelosomic lines Dt1BL and Dt6BL, suggesting that S3 is subjected to chromosome-mediated silencing. Structural differences were detected in the regions surrounding the NOR among homoeologous chromosomes of groups 1 and 6. The adjacent regions distal to the major NORs were expanded compared with their homoeologous counterparts, and the gene density of these expanded regions was relatively low. We provide evidence that these regions are likely to be important for autoregulation of the associated major NORs as well as silencing of minor NORs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Región Organizadora del Nucléolo/genética , ARN de Planta/genética , ARN Ribosómico/genética , Triticum/genética , Cromosomas de las Plantas/genética , Variaciones en el Número de Copia de ADN/genética , Sitios Genéticos/genética , Genoma de Planta/genética , Hibridación Fluorescente in Situ , Región Organizadora del Nucléolo/metabolismo , Reacción en Cadena de la Polimerasa , ARN de Planta/metabolismo , ARN Ribosómico/metabolismo , Triticum/metabolismo
4.
Plant J ; 95(6): 1039-1054, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29952048

RESUMEN

Recombination affects the fate of alleles in populations by imposing constraints on the reshuffling of genetic information. Understanding the genetic basis of these constraints is critical for manipulating the recombination process to improve the resolution of genetic mapping, and reducing the negative effects of linkage drag and deleterious genetic load in breeding. Using sequence-based genotyping of a wheat nested association mapping (NAM) population of 2,100 recombinant inbred lines created by crossing 29 diverse lines, we mapped QTL affecting the distribution and frequency of 102 000 crossovers (CO). Genome-wide recombination rate variation was mostly defined by rare alleles with small effects together explaining up to 48.6% of variation. Most QTL were additive and showed predominantly trans-acting effects. The QTL affecting the proximal COs also acted additively without increasing the frequency of distal COs. We showed that the regions with decreased recombination carry more single nucleotide polymorphisms (SNPs) with possible deleterious effects than the regions with a high recombination rate. Therefore, our study offers insights into the genetic basis of recombination rate variation in wheat and its effect on the distribution of deleterious SNPs across the genome. The identified trans-acting additive QTL can be utilized to manipulate CO frequency and distribution in the large polyploid wheat genome opening the possibility to improve the efficiency of gene pyramiding and reducing the deleterious genetic load in the low-recombining pericentromeric regions of chromosomes.


Asunto(s)
Poliploidía , Recombinación Genética/genética , Triticum/genética , Alelos , Mapeo Cromosómico/métodos , Variación Genética/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
5.
Plant J ; 86(2): 195-207, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26945524

RESUMEN

Generating a contiguous, ordered reference sequence of a complex genome such as hexaploid wheat (2n = 6x = 42; approximately 17 GB) is a challenging task due to its large, highly repetitive, and allopolyploid genome. In wheat, ordering of whole-genome or hierarchical shotgun sequencing contigs is primarily based on recombination and comparative genomics-based approaches. However, comparative genomics approaches are limited to syntenic inference and recombination is suppressed within the pericentromeric regions of wheat chromosomes, thus, precise ordering of physical maps and sequenced contigs across the whole-genome using these approaches is nearly impossible. We developed a whole-genome radiation hybrid (WGRH) resource and tested it by genotyping a set of 115 randomly selected lines on a high-density single nucleotide polymorphism (SNP) array. At the whole-genome level, 26 299 SNP markers were mapped on the RH panel and provided an average mapping resolution of approximately 248 Kb/cR1500 with a total map length of 6866 cR1500 . The 7296 unique mapping bins provided a five- to eight-fold higher resolution than genetic maps used in similar studies. Most strikingly, the RH map had uniform bin resolution across the entire chromosome(s), including pericentromeric regions. Our research provides a valuable and low-cost resource for anchoring and ordering sequenced BAC and next generation sequencing (NGS) contigs. The WGRH developed for reference wheat line Chinese Spring (CS-WGRH), will be useful for anchoring and ordering sequenced BAC and NGS based contigs for assembling a high-quality, reference sequence of hexaploid wheat. Additionally, this study provides an excellent model for developing similar resources for other polyploid species.


Asunto(s)
Triticum/genética , Mapeo Cromosómico , Mapeo Contig , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple , Mapeo de Híbrido por Radiación , Análisis de Secuencia de ADN
7.
Plant J ; 73(6): 952-65, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23253213

RESUMEN

The physical map of the hexaploid wheat chromosome 3B was screened using centromeric DNA probes. A 1.1-Mb region showing the highest number of positive bacterial artificial chromosome (BAC) clones was fully sequenced and annotated, revealing that 96% of the DNA consisted of transposable elements, mainly long terminal repeat (LTR) retrotransposons (88%). Estimation of the insertion time of the transposable elements revealed that CRW (also called Cereba) and Quinta are the youngest elements at the centromeres of common wheat (Triticum spp.) and its diploid ancestors, with Quinta being younger than CRW in both diploid and hexaploid wheats. Chromatin immunoprecipitation experiments revealed that both CRW and Quinta families are targeted by the centromere-specific histone H3 variant CENH3. Immuno colocalization of retroelements and CENH3 antibody indicated that a higher proportion of Quinta than CRWs was associated with CENH3, although CRWs were more abundant. Long arrays of satellite repeats were also identified in the wheat centromere regions, but they lost the ability to bind with CENH3. In addition to transposons, two functional genes and one pseudogene were identified. The gene density in the centromere appeared to be between three and four times lower than the average gene density of chromosome 3B. Comparisons with related grasses also indicated a loss of microcollinearity in this region. Finally, comparison of centromeric sequences of Aegilops tauschii (DD), Triticum boeoticum (AA) and hexaploid wheat revealed that the centromeres in both the polyploids and diploids are still undergoing dynamic changes, and that the new CRWs and Quintas may have undertaken the core role in kinetochore formation.


Asunto(s)
Centrómero/genética , Cromosomas de las Plantas , Retroelementos/genética , Triticum/genética , Cromosomas Artificiales Bacterianos , Elementos Transponibles de ADN , Grano Comestible/genética , Histonas/genética , Filogenia , Mapeo Físico de Cromosoma , Poaceae/genética , Poliploidía , Seudogenes , Sintenía
8.
BMC Genomics ; 15: 922, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25342325

RESUMEN

BACKGROUND: Plant and animal methyltransferases are key enzymes involved in DNA methylation at cytosine residues, required for gene expression control and genome stability. Taking advantage of the new sequence surveys of the wheat genome recently released by the International Wheat Genome Sequencing Consortium, we identified and characterized MET1 genes in the hexaploid wheat Triticum aestivum (TaMET1). RESULTS: Nine TaMET1 genes were identified and mapped on homoeologous chromosome groups 2A/2B/2D, 5A/5B/5D and 7A/7B/7D. Synteny analysis and evolution rates suggest that the genome organization of TaMET1 genes results from a whole genome duplication shared within the grass family, and a second gene duplication, which occurred specifically in the Triticeae tribe prior to the speciation of diploid wheat. Higher expression levels were observed for TaMET1 homoeologous group 2 genes compared to group 5 and 7, indicating that group 2 homoeologous genes are predominant at the transcriptional level, while group 5 evolved into pseudogenes. We show the connection between low expression levels, elevated evolution rates and unexpected enrichment in CG-dinucleotides (CG-rich isochores) at putative promoter regions of homoeologous group 5 and 7, but not of group 2 TaMET1 genes. Bisulfite sequencing reveals that these CG-rich isochores are highly methylated in a CG context, which is the expected target of TaMET1. CONCLUSIONS: We retraced the evolutionary history of MET1 genes in wheat, explaining the predominance of group 2 homoeologous genes and suggest CG-DNA methylation as one of the mechanisms involved in wheat genome dynamics.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas de Plantas/genética , Triticum/enzimología , Metilación de ADN , Evolución Molecular , Duplicación de Gen , Filogenia , Poliploidía , Triticum/genética
9.
J Exp Bot ; 65(20): 5849-65, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25148833

RESUMEN

Prediction of wheat phenology facilitates the selection of cultivars with specific adaptations to a particular environment. However, while QTL analysis for heading date can identify major genes controlling phenology, the results are limited to the environments and genotypes tested. Moreover, while ecophysiological models allow accurate predictions in new environments, they may require substantial phenotypic data to parameterize each genotype. Also, the model parameters are rarely related to all underlying genes, and all the possible allelic combinations that could be obtained by breeding cannot be tested with models. In this study, a QTL-based model is proposed to predict heading date in bread wheat (Triticum aestivum L.). Two parameters of an ecophysiological model (V sat and P base , representing genotype vernalization requirements and photoperiod sensitivity, respectively) were optimized for 210 genotypes grown in 10 contrasting location × sowing date combinations. Multiple linear regression models predicting V sat and P base with 11 and 12 associated genetic markers accounted for 71 and 68% of the variance of these parameters, respectively. QTL-based V sat and P base estimates were able to predict heading date of an independent validation data set (88 genotypes in six location × sowing date combinations) with a root mean square error of prediction of 5 to 8.6 days, explaining 48 to 63% of the variation for heading date. The QTL-based model proposed in this study may be used for agronomic purposes and to assist breeders in suggesting locally adapted ideotypes for wheat phenology.


Asunto(s)
Flores/genética , Genoma de Planta/genética , Sitios de Carácter Cuantitativo/genética , Triticum/genética , Adaptación Fisiológica , Cruzamiento , Ambiente , Flores/fisiología , Flores/efectos de la radiación , Genotipo , Modelos Biológicos , Fenotipo , Fotoperiodo , Factores de Tiempo , Triticum/fisiología , Triticum/efectos de la radiación
10.
Theor Appl Genet ; 127(3): 573-86, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24306318

RESUMEN

Stagonospora nodorum glume blotch (SNG), caused by the necrotrophic fungus Stagonospora nodorum, is one of the economically important diseases of bread wheat (Triticum aestivum L.). Resistance to SNG is known to be quantitative and previous studies of a recombinant inbred line (RIL) population identified a major quantitative trait locus (QTL) for resistance to SNG on the short arm of chromosome 3B. To localize this QTL (QSng.sfr-3BS) with high resolution, we constructed a genetic map for the QTL target region using information from sequenced flow-sorted chromosomes 3B of the two parental cultivars 'Arina' and 'Forno', the physical map of chromosome 3B of cultivar 'Chinese Spring' and BAC-clone sequences. The mapping population of near-isogenic lines (NIL) was evaluated for SNG resistance in field infection tests. NILs segregated for disease resistance as well as for plant height; additionally, we observed a high environmental influence on the trait. Our analysis detected a strong negative correlation of SNG resistance and plant height. Further analysis of the target region identified two linked loci associated with SNG resistance. One of them was also associated with plant height, revealing an effect of QSng.sfr-3BS on plant height that was hidden in the RIL population. This result demonstrates an unexpectedly high genetic complexity of resistance controlled by QSng.sfr-3BS and shows the importance of the study of QTL in mendelized form in NILs.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad/genética , Genes de Plantas , Sitios de Carácter Cuantitativo , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Sitios Genéticos , Marcadores Genéticos , Fenotipo , Enfermedades de las Plantas/microbiología , Triticum/microbiología
11.
Plant Cell ; 22(6): 1686-701, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20581307

RESUMEN

To improve our understanding of the organization and evolution of the wheat (Triticum aestivum) genome, we sequenced and annotated 13-Mb contigs (18.2 Mb) originating from different regions of its largest chromosome, 3B (1 Gb), and produced a 2x chromosome survey by shotgun Illumina/Solexa sequencing. All regions carried genes irrespective of their chromosomal location. However, gene distribution was not random, with 75% of them clustered into small islands containing three genes on average. A twofold increase of gene density was observed toward the telomeres likely due to high tandem and interchromosomal duplication events. A total of 3222 transposable elements were identified, including 800 new families. Most of them are complete but showed a highly nested structure spread over distances as large as 200 kb. A succession of amplification waves involving different transposable element families led to contrasted sequence compositions between the proximal and distal regions. Finally, with an estimate of 50,000 genes per diploid genome, our data suggest that wheat may have a higher gene number than other cereals. Indeed, comparisons with rice (Oryza sativa) and Brachypodium revealed that a high number of additional noncollinear genes are interspersed within a highly conserved ancestral grass gene backbone, supporting the idea of an accelerated evolution in the Triticeae lineages.


Asunto(s)
Elementos Transponibles de ADN , Evolución Molecular , Genoma de Planta , Triticum/genética , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas , Mapeo Contig , ADN de Plantas/genética , Duplicación de Gen , Genes de Plantas , Datos de Secuencia Molecular , Familia de Multigenes , Análisis de Secuencia de ADN , Telómero/genética
12.
Nat Rev Genet ; 8(12): 973-82, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17984973

RESUMEN

Our knowledge of the structure and composition of genomes is rapidly progressing in pace with their sequencing. The emerging data show that a significant portion of eukaryotic genomes is composed of transposable elements (TEs). Given the abundance and diversity of TEs and the speed at which large quantities of sequence data are emerging, identification and annotation of TEs presents a significant challenge. Here we propose the first unified hierarchical classification system, designed on the basis of the transposition mechanism, sequence similarities and structural relationships, that can be easily applied by non-experts. The system and nomenclature is kept up to date at the WikiPoson web site.


Asunto(s)
Elementos Transponibles de ADN/genética , Células Eucariotas/fisiología , Terminología como Asunto , Animales
13.
Plant Genome ; 16(3): e20347, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37243411

RESUMEN

Bread wheat (Triticum aestivum L.) is a major crop and its genome is one of the largest ever assembled at reference-quality level. It is 15 Gb, hexaploid, with 85% of transposable elements (TEs). Wheat genetic diversity was mainly focused on genes and little is known about the extent of genomic variability affecting TEs, transposition rate, and the impact of polyploidy. Multiple chromosome-scale assemblies are now available for bread wheat and for its tetraploid and diploid wild relatives. In this study, we computed base pair-resolved, gene-anchored, whole genome alignments of A, B, and D lineages at different ploidy levels in order to estimate the variability that affects the TE space. We used assembled genomes of 13 T. aestivum cultivars (6x = AABBDD) and a single genome for Triticum durum (4x = AABB), Triticum dicoccoides (4x = AABB), Triticum urartu (2x = AA), and Aegilops tauschii (2x = DD). We show that 5%-34% of the TE fraction is variable, depending on the species divergence. Between 400 and 13,000 novel TE insertions per subgenome were detected. We found lineage-specific insertions for nearly all TE families in di-, tetra-, and hexaploids. No burst of transposition was observed and polyploidization did not trigger any boost of transposition. This study challenges the prevailing idea of wheat TE dynamics and is more in agreement with an equilibrium model of evolution.


Asunto(s)
Elementos Transponibles de ADN , Triticum , Triticum/genética , Genoma de Planta , Poliploidía , Evolución Molecular
14.
Plant Genome ; 16(1): e20296, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36484157

RESUMEN

As genome resources for wheat (Triticum L.) expand at a rapid pace, it is important to update targeted sequencing tools to incorporate improved sequence assemblies and regions of previously unknown significance. Here, we developed an updated regulatory region enrichment capture for wheat and other Triticeae species. The core target space includes sequences from 2-Kbp upstream of each gene predicted in the Chinese Spring wheat genome (IWGSC RefSeq Annotation v1.0) and regions of open chromatin identified with an assay for transposase-accessible chromatin using sequencing from wheat leaf and root samples. To improve specificity, we aggressively filtered candidate repetitive sequences using a combination of nucleotide basic local alignment search tool (BLASTN) searches to the Triticeae Repetitive Sequence Database (TREP), identification of regions with read over-coverage from previous target enrichment experiments, and k-mer frequency analyses. The final design comprises 216.5 Mbp of predicted hybridization space in hexaploid wheat and showed increased specificity and coverage of targeted sequences relative to previous protocols. Test captures on hexaploid and tetraploid wheat and other diploid cereals show that the assay has broad potential utility for cost-effective promoter and open chromatin resequencing and general-purpose genotyping of various Triticeae species.


Asunto(s)
Genoma de Planta , Triticum , Triticum/genética , Análisis Costo-Beneficio , Poliploidía , Regiones Promotoras Genéticas , Cromatina
15.
Plant J ; 65(5): 745-56, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21251102

RESUMEN

Monitoring nitrogen use efficiency (NUE) in plants is becoming essential to maintain yield while reducing fertilizer usage. Optimized NUE application in major crops is essential for long-term sustainability of agriculture production. Here, we report the precise identification of 11 major chromosomal regions controlling NUE in wheat that co-localise with key developmental genes such as Ppd (photoperiod sensitivity), Vrn (vernalization requirement), Rht (reduced height) and can be considered as robust markers from a molecular breeding perspective. Physical mapping, sequencing, annotation and candidate gene validation of an NUE metaQTL on wheat chromosome 3B allowed us to propose that a glutamate synthase (GoGAT) gene that is conserved structurally and functionally at orthologous positions in rice, sorghum and maize genomes may contribute to NUE in wheat and other cereals. We propose an evolutionary model for the NUE locus in cereals from a common ancestral region, involving species specific shuffling events such as gene deletion, inversion, transposition and the invasion of repetitive elements.


Asunto(s)
Evolución Molecular , Genoma de Planta , Nitrógeno/metabolismo , Mapeo Físico de Cromosoma , Triticum/genética , Cromosomas de las Plantas , ADN de Plantas/genética , Sitios de Carácter Cuantitativo , Análisis de Secuencia de ADN , Sintenía , Triticum/metabolismo
16.
BMC Genomics ; 13: 47, 2012 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-22289472

RESUMEN

BACKGROUND: Sequencing projects using a clone-by-clone approach require the availability of a robust physical map. The SNaPshot technology, based on pair-wise comparisons of restriction fragments sizes, has been used recently to build the first physical map of a wheat chromosome and to complete the maize physical map. However, restriction fragments sizes shared randomly between two non-overlapping BACs often lead to chimerical contigs and mis-assembled BACs in such large and repetitive genomes. Whole Genome Profiling (WGP™) was developed recently as a new sequence-based physical mapping technology and has the potential to limit this problem. RESULTS: A subset of the wheat 3B chromosome BAC library covering 230 Mb was used to establish a WGP physical map and to compare it to a map obtained with the SNaPshot technology. We first adapted the WGP-based assembly methodology to cope with the complexity of the wheat genome. Then, the results showed that the WGP map covers the same length than the SNaPshot map but with 30% less contigs and, more importantly with 3.5 times less mis-assembled BACs. Finally, we evaluated the benefit of integrating WGP tags in different sequence assemblies obtained after Roche/454 sequencing of BAC pools. We showed that while WGP tag integration improves assemblies performed with unpaired reads and with paired-end reads at low coverage, it does not significantly improve sequence assemblies performed at high coverage (25x) with paired-end reads. CONCLUSIONS: Our results demonstrate that, with a suitable assembly methodology, WGP builds more robust physical maps than the SNaPshot technology in wheat and that WGP can be adapted to any genome. Moreover, WGP tag integration in sequence assemblies improves low quality assembly. However, to achieve a high quality draft sequence assembly, a sequencing depth of 25x paired-end reads is required, at which point WGP tag integration does not provide additional scaffolding value. Finally, we suggest that WGP tags can support the efficient sequencing of BAC pools by enabling reliable assignment of sequence scaffolds to their BAC of origin, a feature that is of great interest when using BAC pooling strategies to reduce the cost of sequencing large genomes.


Asunto(s)
Genoma de Planta , Mapeo Físico de Cromosoma , Análisis de Secuencia de ADN/métodos , Triticum/genética , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas , Mapeo Contig , Elementos Transponibles de ADN , Alineación de Secuencia
17.
BMC Genomics ; 13: 339, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22827734

RESUMEN

BACKGROUND: The uneven distribution of recombination across the length of chromosomes results in inaccurate estimates of genetic to physical distances. In wheat (Triticum aestivum L.) chromosome 3B, it has been estimated that 90% of the cross over events occur in distal sub-telomeric regions representing 40% of the chromosome. Radiation hybrid (RH) mapping which does not rely on recombination is a strategy to map genomes and has been widely employed in animal species and more recently in some plants. RH maps have been proposed to provide i) higher and ii) more uniform resolution than genetic maps, and iii) to be independent of the distribution patterns observed for meiotic recombination. An in vivo RH panel was generated for mapping chromosome 3B of wheat in an attempt to provide a complete scaffold for this ~1 Gb segment of the genome and compare the resolution to previous genetic maps. RESULTS: A high density RH map with 541 marker loci anchored to chromosome 3B spanning a total distance of 1871.9 cR was generated. Detailed comparisons with a genetic map of similar quality confirmed that i) the overall resolution of the RH map was 10.5 fold higher and ii) six fold more uniform. A significant interaction (r = 0.879 at p = 0.01) was observed between the DNA repair mechanism and the distribution of crossing-over events. This observation could be explained by accepting the possibility that the DNA repair mechanism in somatic cells is affected by the chromatin state in a way similar to the effect that chromatin state has on recombination frequencies in gametic cells. CONCLUSIONS: The RH data presented here support for the first time in vivo the hypothesis of non-casual interaction between recombination hot-spots and DNA repair. Further, two major hypotheses are presented on how chromatin compactness could affect the DNA repair mechanism. Since the initial RH application 37 years ago, we were able to show for the first time that the iii) third hypothesis of RH mapping might not be entirely correct.


Asunto(s)
Cromosomas de las Plantas/genética , Reparación del ADN , Triticum/genética , Cromatina/metabolismo , Rayos gamma , Eliminación de Gen , Mapeo de Híbrido por Radiación
18.
Chromosoma ; 120(2): 185-98, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21161258

RESUMEN

In bread wheat (Triticum aestivum L.), initial studies using deletion lines indicated that crossover (CO) events occur mainly in the telomeric regions of the chromosomes with a possible correlation with the presence of genes. However, little is known about the distribution of COs at the sequence level. To investigate this, we studied in detail the pattern of COs along a contig of 3.110 Mb using two F2 segregating populations (Chinese Spring × Renan (F2-CsRe) and Chinese Spring × Courtot (F2-CsCt)) each containing ~2,000 individuals. The availability of the sequence of the contig from Cs enabled the development of 318 markers among which 23 co-dominant polymorphic markers (11 SSRs and 12 SNPs) were selected for CO distribution analyses. The distribution of CO events was not homogeneous throughout the contig, ranging from 0.05 to 2.77 cM/Mb, but was conserved between the two populations despite very different contig recombination rate averages (0.82 cM/Mb in F2-CsRe vs 0.35 cM/Mb in F2-CsCt). The CO frequency was correlated with the percentage of coding sequence in Cs and with the polymorphism rate between Cs and Re or Ct in both populations, indicating an impact of these two factors on CO distribution. At a finer scale, COs were found in a region covering 2.38 kb, spanning a gene coding for a glycosyl transferase (Hga3), suggesting the presence of a CO hotspot. A non-crossover event covering at least 453 bp was also identified in the same interval. From these results, we can conclude that gene content could be one of the factors driving recombination in bread wheat.


Asunto(s)
Intercambio Genético , Meiosis , Recombinación Genética , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Polimorfismo de Nucleótido Simple
19.
BMC Plant Biol ; 12: 35, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22416807

RESUMEN

BACKGROUND: Wheat grains are an important source of food, stock feed and raw materials for industry, but current production levels cannot meet world needs. Elucidation of the molecular mechanisms underlying wheat grain development will contribute valuable information to improving wheat cultivation. One of the most important mechanisms implicated in plant developmental processes is the ubiquitin-proteasome system (UPS). Among the different roles of the UPS, it is clear that it is essential to hormone signaling. In particular, E3 ubiquitin ligases of the UPS have been shown to play critical roles in hormone perception and signal transduction. RESULTS: A NimbleGen microarray containing 39,179 UniGenes was used to study the kinetics of gene expression during wheat grain development from the early stages of cell division to the mid-grain filling stage. By comparing 11 consecutive time-points, 9284 differentially expressed genes were identified and annotated during this study. A comparison of the temporal profiles of these genes revealed dynamic transcript accumulation profiles with major reprogramming events that occurred during the time intervals of 80-120 and 220-240°Cdays. The list of the genes expressed differentially during these transitions were identified and annotated. Emphasis was placed on E3 ligase and hormone-related genes. In total, 173 E3 ligase coding genes and 126 hormone-related genes were differentially expressed during the cell division and grain filling stages, with each family displaying a different expression profile. CONCLUSIONS: The differential expression of genes involved in the UPS and plant hormone pathways suggests that phytohormones and UPS crosstalk might play a critical role in the wheat grain developmental process. Some E3 ligase and hormone-related genes seem to be up- or down-regulated during the early and late stages of the grain development.


Asunto(s)
Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Triticum/enzimología , Triticum/genética , Ubiquitina-Proteína Ligasas/genética , Tormentas Ciclónicas , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Proteínas de Plantas/metabolismo , Triticum/crecimiento & desarrollo , Ubiquitina-Proteína Ligasas/metabolismo
20.
Plant Physiol ; 157(4): 1596-608, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22034626

RESUMEN

To improve our understanding of the organization and regulation of the wheat (Triticum aestivum) gene space, we established a transcription map of a wheat chromosome (3B) by hybridizing a newly developed wheat expression microarray with bacterial artificial chromosome pools from a new version of the 3B physical map as well as with cDNA probes derived from 15 RNA samples. Mapping data for almost 3,000 genes showed that the gene space spans the whole chromosome 3B with a 2-fold increase of gene density toward the telomeres due to an increase in the number of genes in islands. Comparative analyses with rice (Oryza sativa) and Brachypodium distachyon revealed that these gene islands are composed mainly of genes likely originating from interchromosomal gene duplications. Gene Ontology and expression profile analyses for the 3,000 genes located along the chromosome revealed that the gene islands are enriched significantly in genes sharing the same function or expression profile, thereby suggesting that genes in islands acquired shared regulation during evolution. Only a small fraction of these clusters of cofunctional and coexpressed genes was conserved with rice and B. distachyon, indicating a recent origin. Finally, genes with the same expression profiles in remote islands (coregulation islands) were identified suggesting long-distance regulation of gene expression along the chromosomes in wheat.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , ADN Intergénico/genética , Genoma de Planta/genética , Islas Genómicas/fisiología , Mapeo Físico de Cromosoma/métodos , Triticum/genética , Secuencia de Bases , Brachypodium/genética , Centrómero/genética , Cromosomas de las Plantas/genética , ADN de Plantas/química , ADN de Plantas/genética , Evolución Molecular , Duplicación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Islas Genómicas/genética , Datos de Secuencia Molecular , Familia de Multigenes , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/genética , Poliploidía , Análisis de Secuencia de ADN , Telómero/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA