Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 22(9): 1152-1162, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34385712

RESUMEN

The transcription factor TCF-1 is essential for the development and function of regulatory T (Treg) cells; however, its function is poorly understood. Here, we show that TCF-1 primarily suppresses transcription of genes that are co-bound by Foxp3. Single-cell RNA-sequencing analysis identified effector memory T cells and central memory Treg cells with differential expression of Klf2 and memory and activation markers. TCF-1 deficiency did not change the core Treg cell transcriptional signature, but promoted alternative signaling pathways whereby Treg cells became activated and gained gut-homing properties and characteristics of the TH17 subset of helper T cells. TCF-1-deficient Treg cells strongly suppressed T cell proliferation and cytotoxicity, but were compromised in controlling CD4+ T cell polarization and inflammation. In mice with polyposis, Treg cell-specific TCF-1 deficiency promoted tumor growth. Consistently, tumor-infiltrating Treg cells of patients with colorectal cancer showed lower TCF-1 expression and increased TH17 expression signatures compared to adjacent normal tissue and circulating T cells. Thus, Treg cell-specific TCF-1 expression differentially regulates TH17-mediated inflammation and T cell cytotoxicity, and can determine colorectal cancer outcome.


Asunto(s)
Neoplasias del Colon/patología , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/inmunología , Animales , Proliferación Celular/fisiología , Factores de Transcripción Forkhead/inmunología , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Factor Nuclear 1-alfa del Hepatocito/genética , Memoria Inmunológica/inmunología , Inflamación/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Transcripción Genética/genética , Proteínas Supresoras de Tumor/metabolismo
2.
EMBO J ; 40(9): e106048, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33764576

RESUMEN

Cellular senescence is characterized by an irreversible cell cycle arrest as well as a pro-inflammatory phenotype, thought to contribute to aging and age-related diseases. Neutrophils have essential roles in inflammatory responses; however, in certain contexts their abundance is associated with a number of age-related diseases, including liver disease. The relationship between neutrophils and cellular senescence is not well understood. Here, we show that telomeres in non-immune cells are highly susceptible to oxidative damage caused by neighboring neutrophils. Neutrophils cause telomere dysfunction both in vitro and ex vivo in a ROS-dependent manner. In a mouse model of acute liver injury, depletion of neutrophils reduces telomere dysfunction and senescence. Finally, we show that senescent cells mediate the recruitment of neutrophils to the aged liver and propose that this may be a mechanism by which senescence spreads to surrounding cells. Our results suggest that interventions that counteract neutrophil-induced senescence may be beneficial during aging and age-related disease.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Tetracloruro de Carbono/efectos adversos , Neutrófilos/citología , Especies Reactivas de Oxígeno/metabolismo , Acortamiento del Telómero , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Animales , Línea Celular , Senescencia Celular , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Masculino , Ratones , Neutrófilos/metabolismo , Estrés Oxidativo , Comunicación Paracrina
3.
J Immunol ; 210(12): 2029-2037, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37163328

RESUMEN

The intrinsic and acquired resistance to PD-1/PD-L1 immune checkpoint blockade is an important challenge for patients and clinicians because no reliable tool has been developed to predict individualized response to immunotherapy. In this study, we demonstrate the translational relevance of an ex vivo functional assay that measures the tumor cell killing ability of patient-derived CD8 T and NK cells (referred to as "cytotoxic lymphocytes," or CLs) isolated from the peripheral blood of patients with renal cell carcinoma. Patient-derived PBMCs were isolated before and after nephrectomy from patients with renal cell carcinoma. We compared the efficacy of U.S. Food and Drug Administration (FDA)-approved PD-1/PD-L1 inhibitors (pembrolizumab, nivolumab, atezolizumab) and a newly developed PD-L1 inhibitor (H1A Ab) in eliciting cytotoxic function. CL activity was improved at 3 mo after radical nephrectomy compared with baseline, and it was associated with higher circulating levels of tumor-reactive effector CD8 T cells (CD11ahighCX3CR1+GZMB+). Treatment of PBMCs with FDA-approved PD-1/PD-L1 inhibitors enhanced tumor cell killing activity of CLs, but a differential response was observed at the individual-patient level. H1A demonstrated superior efficacy in promoting CL activity compared with FDA-approved PD-1/PD-L1 inhibitors. PBMC immunophenotyping by mass cytometry revealed enrichment of effector CD8 T and NK cells in H1A-treated PBMCs and immunosuppressive regulatory T cells in atezolizumab-treated samples. Our study lays the ground for future investigation of the therapeutic value of H1A as a next-generation immune checkpoint inhibitor and the potential of measuring CTL activity in PBMCs as a tool to predict individual response to immune checkpoint inhibitors in patients with advanced renal cell carcinoma.


Asunto(s)
Antineoplásicos , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Leucocitos Mononucleares , Antineoplásicos/farmacología , Linfocitos T Reguladores , Neoplasias Renales/tratamiento farmacológico , Nefrectomía , Linfocitos T CD8-positivos
4.
Am J Transplant ; 24(4): 549-563, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37979921

RESUMEN

Kidney allograft inflammation, mostly attributed to rejection and infection, is an important cause of graft injury and loss. Standard histopathological assessment of allograft inflammation provides limited insights into biological processes and the immune landscape. Here, using imaging mass cytometry with a panel of 28 validated biomarkers, we explored the single-cell landscape of kidney allograft inflammation in 32 kidney transplant biopsies and 247 high-dimensional histopathology images of various phenotypes of allograft inflammation (antibody-mediated rejection, T cell-mediated rejection, BK nephropathy, and chronic pyelonephritis). Using novel analytical tools, for cell segmentation, we segmented over 900 000 cells and developed a tissue-based classifier using over 3000 manually annotated kidney microstructures (glomeruli, tubules, interstitium, and arteries). Using PhenoGraph, we identified 11 immune and 9 nonimmune clusters and found a high prevalence of memory T cell and macrophage-enriched immune populations across phenotypes. Additionally, we trained a machine learning classifier to identify spatial biomarkers that could discriminate between the different allograft inflammatory phenotypes. Further validation of imaging mass cytometry in larger cohorts and with more biomarkers will likely help interrogate kidney allograft inflammation in more depth than has been possible to date.


Asunto(s)
Inflamación , Riñón , Humanos , Riñón/patología , Biomarcadores , Inflamación/patología , Aloinjertos/patología , Citometría de Imagen , Rechazo de Injerto/diagnóstico , Rechazo de Injerto/etiología
5.
J Immunol ; 205(5): 1228-1238, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32737149

RESUMEN

Theiler's murine encephalomyelitis virus (TMEV) infection of the CNS is cleared in C57BL/6 mice by a CD8 T cell response restricted by the MHC class I molecule H-2Db The identity and function of the APC(s) involved in the priming of this T cell response is (are) poorly defined. To address this gap in knowledge, we developed an H-2Db LoxP-transgenic mouse system using otherwise MHC class I-deficient C57BL/6 mice, thereby conditionally ablating MHC class I-restricted Ag presentation in targeted APC subpopulations. We observed that CD11c+ APCs are critical for early priming of CD8 T cells against the immunodominant TMEV peptide VP2121-130 Loss of H-2Db on CD11c+ APCs mitigates the CD8 T cell response, preventing early viral clearance and immunopathology associated with CD8 T cell activity in the CNS. In contrast, animals with H-2Db-deficient LysM+ APCs retained early priming of Db:VP2121-130 epitope-specific CD8 T cells, although a modest reduction in immune cell entry into the CNS was observed. This work establishes a model enabling the critical dissection of H-2Db-restricted Ag presentation to CD8 T cells, revealing cell-specific and temporal features involved in the generation of CD8 T cell responses. Employing this novel system, we establish CD11c+ cells as pivotal to the establishment of acute antiviral CD8 T cell responses against the TMEV immunodominant epitope VP2121-130, with functional implications both for T cell-mediated viral control and immunopathology.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Cardiovirus/inmunología , Genes MHC Clase I/inmunología , Antígenos H-2/inmunología , Theilovirus/inmunología , Animales , Presentación de Antígeno , Proteínas de la Cápside/inmunología , Epítopos de Linfocito T/inmunología , Epítopos Inmunodominantes/inmunología , Cinética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
6.
Proc Natl Acad Sci U S A ; 116(8): 3136-3145, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30728302

RESUMEN

Successful efforts to activate T cells capable of recognizing weak cancer-associated self-antigens have employed altered peptide antigens to activate T cell responses capable of cross-reacting on native tumor-associated self. A limitation of this approach is the requirement for detailed knowledge about the altered self-peptide ligands used in these vaccines. In the current study we considered allorecognition as an approach for activating CTL capable of recognizing weak or self-antigens in the context of self-MHC. Nonself antigen-presenting molecules typically contain polymorphisms that influence interactions with the bound peptide and TCR interface. Recognition of these nonself structures results in peptide-dependent alloimmunity. Alloreactive T cells target their inducing alloantigens as well as third-party alloantigens but generally fail to target self-antigens. Certain residues located on the alpha-1/2 domains of class I antigen-presenting molecules primarily interface with TCR. These residues are more conserved within and across species than are residues that determine peptide antigen binding properties. Class I variants designed with amino acid substitutions at key positions within the conserved helical structures are shown to provide strong activating signals to alloreactive CD8 T cells while avoiding changes in naturally bound peptide ligands. Importantly, CTL activated in this manner can break self-tolerance by reacting to self-peptides presented by native MHC. The ability to activate self-tolerant T cells capable of cross-reacting on self-peptide-MHC in vivo represents an approach for inducing autoimmunity, with possible application in cancer vaccines.


Asunto(s)
Presentación de Antígeno/inmunología , Citotoxicidad Inmunológica , Antígenos de Histocompatibilidad Clase I/inmunología , Linfocitos T Citotóxicos/inmunología , Secuencia de Aminoácidos/genética , Animales , Linfocitos T CD8-positivos/inmunología , Humanos , Tolerancia Inmunológica , Ligandos , Activación de Linfocitos/inmunología , Ratones , Péptidos/genética , Péptidos/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
7.
Gastroenterology ; 159(4): 1487-1503.e17, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32574624

RESUMEN

BACKGROUND & AIMS: Endoplasmic reticulum to nucleus signaling 1 (ERN1, also called IRE1A) is a sensor of the unfolded protein response that is activated in the livers of patients with nonalcoholic steatohepatitis (NASH). Hepatocytes release ceramide-enriched inflammatory extracellular vesicles (EVs) after activation of IRE1A. We studied the effects of inhibiting IRE1A on release of inflammatory EVs in mice with diet-induced steatohepatitis. METHODS: C57BL/6J mice and mice with hepatocyte-specific disruption of Ire1a (IRE1αΔhep) were fed a diet high in fat, fructose, and cholesterol to induce development of steatohepatitis or a standard chow diet (controls). Some mice were given intraperitoneal injections of the IRE1A inhibitor 4µ8C. Mouse liver and primary hepatocytes were transduced with adenovirus or adeno-associated virus that expressed IRE1A. Livers were collected from mice and analyzed by quantitative polymerase chain reaction and chromatin immunoprecipitation assays; plasma samples were analyzed by enzyme-linked immunosorbent assay. EVs were derived from hepatocytes and injected intravenously into mice. Plasma EVs were characterized by nanoparticle-tracking analysis, electron microscopy, immunoblots, and nanoscale flow cytometry; we used a membrane-tagged reporter mouse to detect hepatocyte-derived EVs. Plasma and liver tissues from patients with NASH and without NASH (controls) were analyzed for EV concentration and by RNAscope and gene expression analyses. RESULTS: Disruption of Ire1a in hepatocytes or inhibition of IRE1A reduced the release of EVs and liver injury, inflammation, and accumulation of macrophages in mice on the diet high in fat, fructose, and cholesterol. Activation of IRE1A, in the livers of mice, stimulated release of hepatocyte-derived EVs, and also from cultured primary hepatocytes. Mice given intravenous injections of IRE1A-stimulated, hepatocyte-derived EVs accumulated monocyte-derived macrophages in the liver. IRE1A-stimulated EVs were enriched in ceramides. Chromatin immunoprecipitation showed that IRE1A activated X-box binding protein 1 (XBP1) to increase transcription of serine palmitoyltransferase genes, which encode the rate-limiting enzyme for ceramide biosynthesis. Administration of a pharmacologic inhibitor of serine palmitoyltransferase to mice reduced the release of EVs. Levels of XBP1 and serine palmitoyltransferase were increased in liver tissues, and numbers of EVs were increased in plasma, from patients with NASH compared with control samples and correlated with the histologic features of inflammation. CONCLUSIONS: In mouse hepatocytes, activated IRE1A promotes transcription of serine palmitoyltransferase genes via XBP1, resulting in ceramide biosynthesis and release of EVs. The EVs recruit monocyte-derived macrophages to the liver, resulting in inflammation and injury in mice with diet-induced steatohepatitis. Levels of XBP1, serine palmitoyltransferase, and EVs are all increased in liver tissues from patients with NASH. Strategies to block this pathway might be developed to reduce liver inflammation in patients with NASH.


Asunto(s)
Endorribonucleasas/fisiología , Vesículas Extracelulares/patología , Hepatocitos/patología , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Ceramidas/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo
8.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209576

RESUMEN

Neurotropic viruses target the brain and contribute to neurologic diseases. Caspase recruitment domain containing family member 9 (CARD9) controls protective immunity in a variety of infectious disorders. To investigate the effect of CARD9 in neurotropic virus infection, CARD9-/- and corresponding C57BL/6 wild-type control mice were infected with Theiler's murine encephalomyelitis virus (TMEV). Brain tissue was analyzed by histology, immunohistochemistry and molecular analyses, and spleens by flow cytometry. To determine the impact of CARD9 deficiency on T cell responses in vitro, antigen presentation assays were utilized. Genetic ablation of CARD9 enhanced early pro-inflammatory cytokine responses and accelerated infiltration of T and B cells in the brain, together with a transient increase in TMEV-infected cells in the hippocampus. CARD9-/- mice showed an increased loss of neuronal nuclear protein+ mature neurons and doublecortin+ neuronal precursor cells and an increase in ß-amyloid precursor protein+ damaged axons in the hippocampus. No effect of CARD9 deficiency was found on the initiation of CD8+ T cell responses by flow cytometry and co-culture experiments using virus-exposed dendritic cells or microglia-enriched glial cell mixtures, respectively. The present study indicates that CARD9 is dispensable for the initiation of early antiviral responses and TMEV elimination but may contribute to the modulation of neuroinflammation, thereby reducing hippocampal injury following neurotropic virus infection.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/deficiencia , Susceptibilidad a Enfermedades , Encefalitis Viral/etiología , Hipocampo/virología , Infecciones por Picornaviridae/etiología , Picornaviridae/fisiología , Animales , Biomarcadores , Modelos Animales de Enfermedad , Encefalitis Viral/patología , Predisposición Genética a la Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunohistoquímica , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Ratones , Ratones Noqueados , Infecciones por Picornaviridae/patología , Carga Viral
9.
J Hepatol ; 71(6): 1193-1205, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31433301

RESUMEN

BACKGROUND & AIMS: Hepatic recruitment of monocyte-derived macrophages (MoMFs) contributes to the inflammatory response in non-alcoholic steatohepatitis (NASH). However, how hepatocyte lipotoxicity promotes MoMF inflammation is unclear. Here we demonstrate that lipotoxic hepatocyte-derived extracellular vesicles (LPC-EVs) are enriched with active integrin ß1 (ITGß1), which promotes monocyte adhesion and liver inflammation in murine NASH. METHODS: Hepatocytes were treated with either vehicle or the toxic lipid mediator lysophosphatidylcholine (LPC); EVs were isolated from the conditioned media and subjected to proteomic analysis. C57BL/6J mice were fed a diet rich in fat, fructose, and cholesterol (FFC) to induce NASH. Mice were treated with anti-ITGß1 neutralizing antibody (ITGß1Ab) or control IgG isotype. RESULTS: Ingenuity® Pathway Analysis of the LPC-EV proteome indicated that ITG signaling is an overrepresented canonical pathway. Immunogold electron microscopy and nanoscale flow cytometry confirmed that LPC-EVs were enriched with activated ITGß1. Furthermore, we showed that LPC treatment in hepatocytes activates ITGß1 and mediates its endocytic trafficking and sorting into EVs. LPC-EVs enhanced monocyte adhesion to liver sinusoidal cells, as observed by shear stress adhesion assay. This adhesion was attenuated in the presence of ITGß1Ab. FFC-fed, ITGß1Ab-treated mice displayed reduced inflammation, defined by decreased hepatic infiltration and activation of proinflammatory MoMFs, as assessed by immunohistochemistry, mRNA expression, and flow cytometry. Likewise, mass cytometry by time-of-flight on intrahepatic leukocytes showed that ITGß1Ab reduced levels of infiltrating proinflammatory monocytes. Furthermore, ITGß1Ab treatment significantly ameliorated liver injury and fibrosis. CONCLUSIONS: Lipotoxic EVs mediate monocyte adhesion to LSECs mainly through an ITGß1-dependent mechanism. ITGß1Ab ameliorates diet-induced NASH in mice by reducing MoMF-driven inflammation, suggesting that blocking ITGß1 is a potential anti-inflammatory therapeutic strategy in human NASH. LAY SUMMARY: Herein, we report that a cell adhesion molecule termed integrin ß1 (ITGß1) plays a key role in the progression of non-alcoholic steatohepatitis (NASH). ITGß1 is released from hepatocytes under lipotoxic stress as a cargo of extracellular vesicles, and mediates monocyte adhesion to liver sinusoidal endothelial cells, which is an essential step in hepatic inflammation. In a mouse model of NASH, blocking ITGß1 reduces liver inflammation, injury and fibrosis. Hence, ITGß1 inhibition may serve as a new therapeutic strategy for NASH.


Asunto(s)
Anticuerpos Neutralizantes , Adhesión Celular/inmunología , Hepatocitos/inmunología , Integrina beta1/inmunología , Lisofosfatidilcolinas/farmacología , Macrófagos/inmunología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Animales , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Vesículas Extracelulares/inmunología , Hepatocitos/metabolismo , Humanos , Cirrosis Hepática/prevención & control , Ratones , Monocitos/inmunología , Enfermedad del Hígado Graso no Alcohólico/terapia
10.
FASEB J ; 31(6): 2267-2275, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28188174

RESUMEN

Brain atrophy is a common feature of numerous neurologic diseases in which the role of neuroinflammation remains ill-defined. In this study, we evaluated the contribution of major histocompatibility complex class I molecules to brain atrophy in Theiler's murine encephalomyelitis virus (TMEV)-infected transgenic FVB mice that express the Db class I molecule. FVB/Db and wild-type FVB mice were evaluated for changes in neuroinflammation, virus clearance, neuropathology, and development of brain atrophy via T2-weighted MRI and subsequent 3-dimensional volumetric analysis. Significant brain atrophy and hippocampal neuronal loss were observed in TMEV-infected FVB/Db mice, but not in wild-type FVB mice. Brain atrophy was observed at 1 mo postinfection and persisted through the 4-mo observation period. Of importance, virus-infected FVB/Db mice elicited a strong CD8 T-cell response toward the immunodominant Db-restricted TMEV-derived peptide, VP2121-130, and cleared TMEV from the CNS. In addition, immunofluorescence revealed CD8 T cells near virus-infected neurons; therefore, we hypothesize that class I restricted CD8 T-cell responses promote development of brain atrophy. This model provides an opportunity to analyze the contribution of immune cells to brain atrophy in a system where persistent virus infection and demyelination are not factors in long-term neuropathology.-Huseby Kelcher, A. M., Atanga, P. A., Gamez, J. D., Cumba Garcia, L. M., Teclaw, S. J., Pavelko, K. D., Macura, S. I., Johnson. A. J. Brain atrophy in picornavirus-infected FVB mice is dependent on the H-2Db class I molecule.


Asunto(s)
Encefalopatías/virología , Encéfalo/patología , Genes MHC Clase I/genética , Infecciones por Picornaviridae/patología , Theilovirus , Animales , Atrofia , Encéfalo/virología , Linfocitos T CD8-positivos/fisiología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos , Ratones Transgénicos , Neuronas/virología , Infecciones por Picornaviridae/inmunología , Carga Viral
11.
J Neuroinflammation ; 13(1): 222, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27576583

RESUMEN

BACKGROUND: CD8 T cell-mediated blood-brain barrier (BBB) disruption is dependent on the effector molecule perforin. Human perforin has extensive single nucleotide variants (SNVs), the significance of which is not fully understood. These SNVs can result in reduced, but not ablated, perforin activity or expression. However, complete loss of perforin expression or activity results in the lethal disease familial hemophagocytic lymphohistiocytosis type 2 (FHL 2). In this study, we address the hypothesis that a single perforin allele can alter the severity of BBB disruption in vivo using a well-established model of CNS vascular permeability in C57Bl/6 mice. The results of this study provide insight into the significance of perforin SNVs in the human population. METHODS: We isolated the effect a single perforin allele has on CNS vascular permeability through the use of perforin-heterozygous (perforin+/-) C57BL/6 mice in the peptide-induced fatal syndrome (PIFS) model of immune-mediated BBB disruption. Seven days following Theiler's murine encephalomyelitis virus (TMEV) CNS infection, neuroinflammation and TMEV viral control were assessed through flow cytometric analysis and quantitative real-time PCR of the viral genome, respectively. Following immune-mediated BBB disruption, gadolinium-enhanced T1-weighted MRI, with 3D volumetric analysis, and confocal microscopy were used to define CNS vascular permeability. Finally, the open field behavior test was used to assess locomotor activity of mice following immune-mediated BBB disruption. RESULTS: Perforin-null mice had negligible CNS vascular permeability. Perforin-WT mice have extensive CNS vascular permeability. Interestingly, perforin-heterozygous mice had an intermediate level of CNS vascular permeability as measured by both gadolinium-enhanced T1-weighted MRI and fibrinogen leakage in the brain parenchyma. Differences in BBB disruption were not a result of increased CNS immune infiltrate. Additionally, TMEV was controlled in a perforin dose-dependent manner. Furthermore, a single perforin allele is sufficient to induce locomotor deficit during immune-mediated BBB disruption. CONCLUSIONS: Perforin modulates BBB disruption in a dose-dependent manner. This study demonstrates a potentially advantageous role for decreased perforin expression in reducing BBB disruption. This study also provides insight into the effect SNVs in a single perforin allele could have on functional deficit in neurological disease.


Asunto(s)
Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Dosificación de Gen/fisiología , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animales , Barrera Hematoencefálica/virología , Encéfalo/virología , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Citotóxicas Formadoras de Poros/genética , Theilovirus/genética , Theilovirus/metabolismo
13.
PLoS Pathog ; 8(2): e1002541, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22383876

RESUMEN

Structural diversity in the peptide binding sites of the redundant classical MHC antigen presenting molecules is strongly selected in humans and mice. Although the encoded antigen presenting molecules overlap in antigen presenting function, differences in polymorphism at the MHC I A, B and C loci in humans and higher primates indicate these loci are not functionally equivalent. The structural basis of these differences is not known. We hypothesize that classical class I loci differ in their ability to direct effective immunity against intracellular pathogens. Using a picornavirus infection model and chimeric H-2 transgenes, we examined locus specific functional determinants distinguishing the ability of class I sister genes to direct effective anti viral immunity. Whereas, parental FVB and transgenic FVB mice expressing the H-2K(b) gene are highly susceptible to persisting Theiler's virus infection within the CNS and subsequent demyelination, mice expressing the D(b) transgene clear the virus and are protected from demyelination. Remarkably, animals expressing a chimeric transgene, comprised primarily of K(b) but encoding the peptide binding domain of D(b), develop a robust anti viral CTL response yet fail to clear virus and develop significant demyelination. Differences in expression of the chimeric K(b)α1α2D(b) gene (low) and D(b) (high) in the CNS of infected mice mirror expression levels of their endogenous H-2(q) counterparts in FVB mice. These findings demonstrate that locus specific elements other than those specifying peptide binding and T cell receptor interaction can determine ability to clear virus infection. This finding provides a basis for understanding locus-specific differences in MHC polymorphism, characterized best in human populations.


Asunto(s)
Genes MHC Clase I/fisiología , Sitios Genéticos/fisiología , Inmunidad Innata/genética , Virus/inmunología , Animales , Eficiencia , Antígenos H-2/química , Antígenos H-2/genética , Antígenos H-2/metabolismo , Células HEK293 , Antígeno de Histocompatibilidad H-2D , Humanos , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Transgénicos , Modelos Moleculares , Virosis/genética , Virosis/inmunología
14.
Mol Ther ; 21(5): 1087-95, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23568262

RESUMEN

Picornaviruses have been developed as potential therapies for gene delivery and vaccination. One drawback to their use is the potential for recombination and viral persistence. Therefore, the engineering strategies used must take into account the possibility for virus escape. We have developed Theiler's murine encephalomyelitis virus (TMEV) as a potential vaccine vector for use in immunotherapy. This study shows that insertion of a vaccine epitope at a unique site within the TMEV leader protein can dramatically increase the type I interferon (IFN) response to infection and promote rapid viral clearance. This live virus vaccine maintains its ability to drive antigen-specific CD8(+) T-cell responses to a model antigen as well as to the weakly immunogenic tumor antigen Her2/neu. Furthermore, the epitope integration site does not affect the efficacy of this vaccine as cancer immunotherapy for treating models of melanoma and breast cancer as demonstrated by delayed tumor outgrowth and increased survival in animals implanted with these tumors. These findings show that an attenuated virus retaining limited ability to replicate nonetheless can effectively mobilize CD8(+) cellular immunity and will be important for the design of picornavirus vectors used as immunotherapy in clinical settings.


Asunto(s)
Antígenos/inmunología , Vacunas contra el Cáncer/inmunología , Epítopos/inmunología , Neoplasias/inmunología , Theilovirus/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/genética , Infecciones por Cardiovirus/inmunología , Infecciones por Cardiovirus/mortalidad , Infecciones por Cardiovirus/virología , Línea Celular Tumoral , Femenino , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Humanos , Inmunoterapia , Interferón Tipo I/inmunología , Ratones , Datos de Secuencia Molecular , Mutagénesis Insercional , Neoplasias/patología , Neoplasias/terapia , Receptor ErbB-2/inmunología , Theilovirus/genética , Carga Tumoral/efectos de los fármacos , Vacunas Atenuadas , Proteínas Virales/química , Proteínas Virales/inmunología
15.
Sci Rep ; 14(1): 2145, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273071

RESUMEN

Ductular reactive (DR) cells exacerbate cholestatic liver injury and fibrosis. Herein, we posit that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) emanates from recruited macrophages and restrains DR cell expansion, thereby limiting cholestatic liver injury. Wild type (WT), Trailfl/fl and myeloid-specific Trail deleted (TrailΔmye) C57BL/6 mice were exposed to DDC diet-induced cholestatic liver injury, which induced hepatomegaly and liver injury as compared to control diet-fed mice. However, parameters of liver injury, fibrosis, and inflammation were all increased in the TrailΔmye mice as compared to the WT and Trailfl/fl mice. High dimensional mass cytometry indicated that cholestasis resulted in increased hepatic recruitment of subsets of macrophages and neutrophils in the TrailΔmye mice. Spatial transcriptomics analysis revealed that the PanCK+ cholangiocytes from TrailΔmye mice had increased expression of the known myeloid attractants S100a8, Cxcl5, Cx3cl1, and Cxcl1. Additionally, in situ hybridization of Cxcl1, a potent neutrophil chemoattractant, demonstrated an increased expression in CK19+ cholangiocytes of TrailΔmye mice. Collectively, these data suggest that TRAIL from myeloid cells, particularly macrophages, restrains a subset of DR cells (i.e., Cxcl1 positive cells), limiting liver inflammation and fibrosis. Reprogramming macrophages to express TRAIL may be salutary in cholestasis.


Asunto(s)
Colestasis , Hígado , Animales , Ratones , Apoptosis/genética , Colestasis/metabolismo , Fibrosis , Ligandos , Hígado/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/metabolismo
16.
JCI Insight ; 9(3)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38175729

RESUMEN

Intrahepatic macrophages in nonalcoholic steatohepatitis (NASH) are heterogenous and include proinflammatory recruited monocyte-derived macrophages. The receptor for advanced glycation endproducts (RAGE) is expressed on macrophages and can be activated by damage associated molecular patterns (DAMPs) upregulated in NASH, yet the role of macrophage-specific RAGE signaling in NASH is unclear. Therefore, we hypothesized that RAGE-expressing macrophages are proinflammatory and mediate liver inflammation in NASH. Compared with healthy controls, RAGE expression was increased in liver biopsies from patients with NASH. In a high-fat, -fructose, and -cholesterol-induced (FFC)-induced murine model of NASH, RAGE expression was increased, specifically on recruited macrophages. FFC mice that received a pharmacological inhibitor of RAGE (TTP488), and myeloid-specific RAGE KO mice (RAGE-MKO) had attenuated liver injury associated with a reduced accumulation of RAGE+ recruited macrophages. Transcriptomics analysis suggested that pathways of macrophage and T cell activation were upregulated by FFC diet, inhibited by TTP488 treatment, and reduced in RAGE-MKO mice. Correspondingly, the secretome of ligand-stimulated BM-derived macrophages from RAGE-MKO mice had an attenuated capacity to activate CD8+ T cells. Our data implicate RAGE as what we propose to be a novel and potentially targetable mediator of the proinflammatory signaling of recruited macrophages in NASH.


Asunto(s)
Hepatitis , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Macrófagos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo
17.
JHEP Rep ; 6(6): 101073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38882600

RESUMEN

Background & Aims: Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by excessive circulating toxic lipids, hepatic steatosis, and liver inflammation. Monocyte adhesion to liver sinusoidal endothelial cells (LSECs) and transendothelial migration (TEM) are crucial in the inflammatory process. Under lipotoxic stress, LSECs develop a proinflammatory phenotype known as endotheliopathy. However, mediators of endotheliopathy remain unclear. Methods: Primary mouse LSECs isolated from C57BL/6J mice fed chow or MASH-inducing diets rich in fat, fructose, and cholesterol (FFC) were subjected to multi-omics profiling. Mice with established MASH resulting from a choline-deficient high-fat diet (CDHFD) or FFC diet were also treated with two structurally distinct GSK3 inhibitors (LY2090314 and elraglusib [9-ING-41]). Results: Integrated pathway analysis of the mouse LSEC proteome and transcriptome indicated that leukocyte TEM and focal adhesion were the major pathways altered in MASH. Kinome profiling of the LSEC phosphoproteome identified glycogen synthase kinase (GSK)-3ß as the major kinase hub in MASH. GSK3ß-activating phosphorylation was increased in primary human LSECs treated with the toxic lipid palmitate and in human MASH. Palmitate upregulated the expression of C-X-C motif chemokine ligand 2, intracellular adhesion molecule 1, and phosphorylated focal adhesion kinase, via a GSK3-dependent mechanism. Congruently, the adhesive and transendothelial migratory capacities of primary human neutrophils and THP-1 monocytes through the LSEC monolayer under lipotoxic stress were reduced by GSK3 inhibition. Treatment with the GSK3 inhibitors LY2090314 and elraglusib ameliorated liver inflammation, injury, and fibrosis in FFC- and CDHFD-fed mice, respectively. Immunophenotyping using cytometry by mass cytometry by time of flight of intrahepatic leukocytes from CDHFD-fed mice treated with elraglusib showed reduced infiltration of proinflammatory monocyte-derived macrophages and monocyte-derived dendritic cells. Conclusion: GSK3 inhibition attenuates lipotoxicity-induced LSEC endotheliopathy and could serve as a potential therapeutic strategy for treating human MASH. Impact and Implications: LSECs under lipotoxic stress in MASH develop a proinflammatory phenotype known as endotheliopathy, with obscure mediators and functional outcomes. The current study identified GSK3 as the major driver of LSEC endotheliopathy, examined its pathogenic role in myeloid cell-associated liver inflammation, and defined the therapeutic efficacy of pharmacological GSK3 inhibitors in murine MASH. This study provides preclinical data for the future investigation of GSK3 pharmacological inhibitors in human MASH. The results of this study are important to hepatologists, vascular biologists, and investigators studying the mechanisms of inflammatory liver disease and MASH, as well as those interested in drug development.

18.
Nat Commun ; 14(1): 4587, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524694

RESUMEN

Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we apply mass cytometry by time-of-flight using carefully validated antibodies to analyze senescent cells at single-cell resolution. We use multiple criteria to identify senescent mesenchymal cells that are growth-arrested and resistant to apoptosis. These p16 + Ki67-BCL-2+ cells are highly enriched for senescence-associated secretory phenotype and DNA damage markers, are strongly associated with age, and their percentages are increased in late osteoblasts/osteocytes and CD24high osteolineage cells. Moreover, both late osteoblasts/osteocytes and CD24high osteolineage cells are robustly cleared by genetic and pharmacologic senolytic therapies in aged mice. Following isolation, CD24+ skeletal cells exhibit growth arrest, senescence-associated ß-galactosidase positivity, and impaired osteogenesis in vitro. These studies thus provide an approach using multiplexed protein profiling to define senescent mesenchymal cells in vivo and identify specific skeletal cell populations cleared by senolytics.


Asunto(s)
Senescencia Celular , Senoterapéuticos , Ratones , Animales , Senescencia Celular/genética , Envejecimiento/genética , Osteoblastos , Esqueleto
19.
Front Immunol ; 14: 1130209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36993965

RESUMEN

Total joint arthroplasty (TJA) implants are composed of metal components. Although they are regarded safe, the long-term immunological effects of chronic exposure to the specific implant materials are unknown. We recruited 115 hip and/or knee TJA patients (mean age 68 years) who provided a blood draw for measurement of chromium, cobalt, titanium concentrations, inflammatory markers and systemic distribution of immune cells. We examined differences between the immune markers and the systemic concentrations of chromium, cobalt and titanium. CD66-b neutrophils, early natural killer cells (NK), and eosinophils were present in higher percentages in patients with chromium and cobalt concentrations greater than the median. The opposite pattern was observed with titanium where the percentages of CD66-b neutrophils, early NK, and eosinophils were higher in patients with undetectable titanium. Cobalt concentrations were positively correlated with a higher percentage of gamma delta T cells. Both chromium and cobalt concentrations were positively correlated with higher percentages of plasmablasts. Titanium concentrations were positively correlated with higher CD4 effector memory T cells, regulatory T cell count and Th1 CD4 helper cells. In this exploratory study, we observed altered distribution of immune cells in TJA patients with elevated systemic metal concentrations. Although these correlations were not strong, these exploratory findings warrant further investigation into the role of increased metals circulating in blood and its role in immune modulation.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Humanos , Anciano , Titanio/farmacología , Estudios Transversales , Biomarcadores , Cromo , Cobalto/farmacología
20.
bioRxiv ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36711531

RESUMEN

Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we applied mass cytometry by time-of-flight (CyTOF) using carefully validated antibodies to analyze senescent cells at single-cell resolution. We used multiple criteria to identify senescent mesenchymal cells that were growth arrested and resistant to apoptosis (p16+/Ki67-/BCL-2+; "p16KB" cells). These cells were highly enriched for senescence-associated secretory phenotype (SASP) and DNA damage markers and were strongly associated with age. p16KB cell percentages were also increased in CD24+ osteolineage cells, which exhibited an inflammatory SASP in aged mice and were robustly cleared by both genetic and pharmacologic senolytic therapies. Following isolation, CD24+ skeletal cells exhibited growth arrest, SA-ßgal positivity, and impaired osteogenesis in vitro . These studies thus provide a new approach using multiplexed protein profiling by CyTOF to define senescent mesenchymal cells in vivo and identify a highly inflammatory, senescent CD24+ osteolineage population cleared by senolytics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA