Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 137(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38265145

RESUMEN

The evolutionarily conserved apical Crumbs (CRB) complex, consisting of the core components CRB3a (an isoform of CRB3), PALS1 and PATJ, plays a key role in epithelial cell-cell contact formation and cell polarization. Recently, we observed that deletion of one Pals1 allele in mice results in functional haploinsufficiency characterized by renal cysts. Here, to address the role of PALS1 at the cellular level, we generated CRISPR/Cas9-mediated PALS1-knockout MDCKII cell lines. The loss of PALS1 resulted in increased paracellular permeability, indicating an epithelial barrier defect. This defect was associated with a redistribution of several tight junction-associated proteins from bicellular to tricellular contacts. PALS1-dependent localization of tight junction proteins at bicellular junctions required its interaction with PATJ. Importantly, reestablishment of the tight junction belt upon transient F-actin depolymerization or upon Ca2+ removal was strongly delayed in PALS1-deficient cells. Additionally, the cytoskeleton regulator RhoA was redistributed from junctions into the cytosol under PALS1 knockout. Together, our data uncover a critical role of PALS1 in the coupling of tight junction proteins to the F-actin cytoskeleton, which ensures their correct distribution along bicellular junctions and the formation of tight epithelial barrier.


Asunto(s)
Células Epiteliales , Proteínas de la Membrana , Nucleósido-Fosfato Quinasa , Proteínas de Uniones Estrechas , Animales , Ratones , Citoesqueleto de Actina , Actinas , Citoesqueleto , Citosol , Nucleósido-Fosfato Quinasa/genética , Proteínas de la Membrana/genética
2.
Angiogenesis ; 27(3): 411-422, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38598083

RESUMEN

Damage of the endothelial glycocalyx (eGC) plays a central role in the development of vascular hyperpermeability and organ damage during systemic inflammation. However, the specific signalling pathways for eGC damage remain poorly defined. Aim of this study was to combine sublingual video-microscopy, plasma proteomics and live cell imaging to uncover further pathways of eGC damage in patients with coronavirus disease 2019 (COVID-19) or bacterial sepsis. This secondary analysis of the prospective multicenter MICROCODE study included 22 patients with COVID-19 and 43 patients with bacterial sepsis admitted to intermediate or intensive care units and 10 healthy controls. Interleukin-6 (IL-6) was strongly associated with damaged eGC and correlated both with eGC dimensions (rs=0.36, p = 0.0015) and circulating eGC biomarkers. In vitro, IL-6 reduced eGC height and coverage, which was inhibited by blocking IL-6 signalling with the anti-IL-6 receptor antibody tocilizumab or the Janus kinase inhibitor tofacitinib. Exposure of endothelial cells to 5% serum from COVID-19 or sepsis patients resulted in a significant decrease in eGC height, which was attenuated by co-incubation with tocilizumab. In an external COVID-19 cohort of 219 patients from Massachusetts General Hospital, a previously identified proteomic eGC signature correlated with IL-6 (rs=-0.58, p < 0.0001) and predicted the combined endpoint of 28-day mortality and/or intubation (ROC-AUC: 0.86 [95% CI: 0.81-0.91], p < 0.001). The data suggest that IL-6 may significantly drive eGC damage in COVID-19 and bacterial sepsis. Our findings provide valuable insights into pathomechanisms of vascular dysfunction during systemic inflammation and highlight the need for further in vivo studies.


Asunto(s)
COVID-19 , Glicocálix , Interleucina-6 , Sepsis , Humanos , COVID-19/patología , COVID-19/metabolismo , COVID-19/complicaciones , Glicocálix/metabolismo , Glicocálix/patología , Interleucina-6/metabolismo , Interleucina-6/sangre , Masculino , Femenino , Persona de Mediana Edad , Sepsis/patología , Sepsis/metabolismo , Sepsis/complicaciones , Anciano , Estudios Prospectivos , SARS-CoV-2/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Anticuerpos Monoclonales Humanizados
3.
FASEB J ; 37(5): e22912, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37086090

RESUMEN

The family of WWC proteins is known to regulate cell proliferation and organ growth control via the Hippo signaling pathway. As WWC proteins share a similar domain structure and a common set of interacting proteins, they are supposed to fulfill compensatory functions in cells and tissues. While all three WWC family members WWC1, WWC2, and WWC3 are found co-expressed in most human organs including lung, brain, kidney, and liver, in the testis only WWC2 displays a relatively high expression. In this study, we investigated the testicular WWC2 expression in spermatogenesis and male fertility. We show that the Wwc2 mRNA expression level in mouse testes is increased during development in parallel with germ cell proliferation and differentiation. The cellular expression of each individual WWC family member was evaluated in published single-cell mRNA datasets of murine and human testes demonstrating a high WWC2 expression predominantly in early spermatocytes. In line with this, immunohistochemistry revealed cytosolic WWC2 protein expression in primary spermatocytes from human testes displaying full spermatogenesis. In accordance with these findings, markedly lower WWC2 expression levels were detected in testicular tissues from mice and men lacking germ cells. Finally, analysis of whole-exome sequencing data of male patients affected by infertility and unexplained severe spermatogenic failure revealed several heterozygous, rare WWC2 gene variants with a proposed damaging function and putative impact on WWC2 protein structure. Taken together, our findings provide novel insights into the testicular expression of WWC2 and show its cell-specific expression in spermatocytes. As rare WWC2 variants were identified in the background of disturbed spermatogenesis, WWC2 may be a novel candidate gene for male infertility.


Asunto(s)
Infertilidad Masculina , Espermatogénesis , Testículo , Animales , Humanos , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fertilidad/genética , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espermatogénesis/genética , Testículo/metabolismo
4.
J Am Soc Nephrol ; 34(6): 1039-1055, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36930055

RESUMEN

SIGNIFICANCE STATEMENT: Nuclear exclusion of the cotranscription factor YAP, which is a consequence of activation of the Hippo signaling pathway, leads to FSGS and podocyte apoptosis. Ajuba proteins play an important role in the glomerular filtration barrier by keeping the Hippo pathway inactive. In nephrocytes from Drosophila melanogaster , a well-established model system for podocyte research, Ajuba proteins ensure slit diaphragm (SD) formation and function. Hippo pathway activation leads to mislocalization of Ajuba proteins, decreased SD formation, rearrangement of the actin cytoskeleton, and increased SD permeability. Targeting the kinases of the Hippo pathway with specific inhibitors in the glomerulus could, therefore, be a promising strategy for therapy of FSGS. BACKGROUND: The highly conserved Hippo pathway, which regulates organ growth and cell proliferation by inhibiting transcriptional cofactors YAP/TAZ, plays a special role in podocytes, where activation of the pathway leads to apoptosis. The Ajuba family proteins (Ajuba, LIM domain-containing protein 1 (LIMD1) and Wilms tumor protein 1-interacting protein [WTIP]) can bind and inactivate large tumor suppressor kinases 1 and 2, (LATS1/2) two of the Hippo pathway key kinases. WTIP, furthermore, connects the slit diaphragm (SD), the specialized cell-cell junction between podocytes, with the actin cytoskeleton. METHODS: We used garland cell nephrocytes of Drosophila melanogaster to monitor the role of Ajuba proteins in Hippo pathway regulation and structural integrity of the SD. Microscopy and functional assays analyzed the interplay between Ajuba proteins and LATS2 regarding expression, localization, interaction, and effects on the functionality of the SD. RESULTS: In nephrocytes, the Ajuba homolog Djub recruited Warts (LATS2 homolog) to the SD. Knockdown of Djub activated the Hippo pathway. Reciprocally, Hippo activation reduced the Djub level. Both Djub knockdown and Hippo activation led to morphological changes in the SD, rearrangement of the cortical actin cytoskeleton, and increased SD permeability. Knockdown of Warts or overexpression of constitutively active Yki prevented these effects. In podocytes, Hippo pathway activation or knockdown of YAP also decreased the level of Ajuba proteins. CONCLUSIONS: Ajuba proteins regulate the structure and function of the SD in nephrocytes, connecting the SD protein complex to the actin cytoskeleton and maintaining the Hippo pathway in an inactive state. Hippo pathway activation directly influencing Djub expression suggests a self-amplifying feedback mechanism.


Asunto(s)
Proteínas de Drosophila , Glomeruloesclerosis Focal y Segmentaria , Verrugas , Animales , Vía de Señalización Hippo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Señalizadoras YAP , Uniones Intercelulares , Proteínas de Drosophila/metabolismo
5.
J Am Soc Nephrol ; 34(7): 1191-1206, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37022133

RESUMEN

SIGNIFICANCE STATEMENT: Endocytosis, recycling, and degradation of proteins are essential functions of mammalian cells, especially for terminally differentiated cells with limited regeneration rates and complex morphology, such as podocytes. To improve our understanding on how disturbances of these trafficking pathways are linked to podocyte depletion and slit diaphragm (SD) injury, the authors explored the role of the small GTPase Rab7, which is linked to endosomal, lysosomal, and autophagic pathways, using as model systems mice and Drosophila with podocyte-specific or nephrocyte-specific loss of Rab7, and a human podocyte cell line depleted for Rab7. Their findings point to maturation and fusion events during endolysosomal and autophagic maturation as key processes for podocyte homeostasis and function and identify altered lysosomal pH values as a putative novel mechanism for podocytopathies. BACKGROUND: Endocytosis, recycling, and degradation of proteins are essential functions of mammalian cells, especially for terminally differentiated cells with limited regeneration rates, such as podocytes. How disturbances within these trafficking pathways may act as factors in proteinuric glomerular diseases is poorly understood. METHODS: To explore how disturbances in trafficking pathways may act as factors in proteinuric glomerular diseases, we focused on Rab7, a highly conserved GTPase that controls the homeostasis of late endolysosomal and autophagic processes. We generated mouse and Drosophila in vivo models lacking Rab7 exclusively in podocytes or nephrocytes, and performed histologic and ultrastructural analyses. To further investigate Rab7 function on lysosomal and autophagic structures, we used immortalized human cell lines depleted for Rab7. RESULTS: Depletion of Rab7 in mice, Drosophila , and immortalized human cell lines resulted in an accumulation of diverse vesicular structures resembling multivesicular bodies, autophagosomes, and autoendolysosomes. Mice lacking Rab7 developed a severe and lethal renal phenotype with early-onset proteinuria and global or focal segmental glomerulosclerosis, accompanied by an altered distribution of slit diaphragm proteins. Remarkably, structures resembling multivesicular bodies began forming within 2 weeks after birth, prior to the glomerular injuries. In Drosophila nephrocytes, Rab7 knockdown resulted in the accumulation of vesicles and reduced slit diaphragms. In vitro , Rab7 knockout led to similar enlarged vesicles and altered lysosomal pH values, accompanied by an accumulation of lysosomal marker proteins. CONCLUSIONS: Disruption within the final common pathway of endocytic and autophagic processes may be a novel and insufficiently understood mechanism regulating podocyte health and disease.


Asunto(s)
Glomérulos Renales , Podocitos , Animales , Ratones , Humanos , Glomérulos Renales/patología , Podocitos/metabolismo , Endosomas , Drosophila , Riñón , Mamíferos
6.
Int J Mol Sci ; 25(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38791413

RESUMEN

Urinary dickkopf 3 (uDKK3) is a marker released by kidney tubular epithelial cells that is associated with the progression of chronic kidney disease (CKD) and may cause interstitial fibrosis and tubular atrophy. Recent evidence suggests that uDKK3 can also predict the loss of kidney function in CKD patients and kidney transplant recipients, regardless of their current renal function. We conducted a prospective study on 181 kidney transplant (KTx) recipients who underwent allograft biopsy to determine the cause, analyzing the relationship between uDKK3 levels in urine, histological findings, and future allograft function progression. Additionally, we studied 82 living kidney donors before unilateral nephrectomy (Nx), 1-3 days after surgery, and 1 year post-surgery to observe the effects of rapid kidney function loss. In living donors, the uDKK3/creatinine ratio significantly increased 5.3-fold 1-3 days after Nx. However, it decreased significantly to a median level of 620 pg/mg after one year, despite the absence of underlying primary kidney pathology. The estimated glomerular filtration rate (eGFR) decreased by an average of 29.3% to approximately 66.5 (±13.5) mL/min/1.73 m2 after one year, with no further decline in the subsequent years. uDKK3 levels increased in line with eGFR loss after Nx, followed by a decrease as the eGFR partially recovered within the following year. However, uDKK3 did not correlate with the eGFR at the single time points in living donors. In KTx recipients, the uDKK3/creatinine ratio was significantly elevated with a median of 1550 pg/mg compared to healthy individuals or donors after Nx. The mean eGFR in the recipient group was 35.5 mL/min/1.73 m2. The uDKK3/creatinine ratio was statistically associated with the eGFR at biopsy but was not independently associated with the eGFR one year after biopsy or allograft loss. In conclusion, uDKK3 correlates with recent and future kidney function and kidney allograft survival in the renal transplant cohort. Nevertheless, our findings indicate that the uDKK3/creatinine ratio has no prognostic influence on future renal outcome in living donors and kidney recipients beyond the eGFR, independent of the presence of acute renal graft pathology, as correlations are GFR-dependent.


Asunto(s)
Biomarcadores , Tasa de Filtración Glomerular , Trasplante de Riñón , Donadores Vivos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas Adaptadoras Transductoras de Señales , Biomarcadores/orina , Péptidos y Proteínas de Señalización Intercelular/orina , Riñón/patología , Riñón/fisiopatología , Trasplante de Riñón/efectos adversos , Estudios Prospectivos , Insuficiencia Renal Crónica/orina , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/etiología , Factores de Riesgo , Receptores de Trasplantes
7.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474146

RESUMEN

Immune alterations in end-stage renal patients receiving hemodialysis are complex and predispose patients to infections. Anticoagulation may also play an immunomodulatory role in addition to the accumulation of uremic toxins and the effects of the dialysis procedure. Accordingly, it has been recently shown that the infection rate increases in patients under regional citrate anticoagulation (RCA) compared with systemic heparin anticoagulation (SHA). We hypothesized that RCA affects the immune status of hemodialysis patients by targeting monocytes. In a cohort of 38 end-stage renal patients undergoing hemodialysis, we demonstrated that whole blood monocytes of patients receiving RCA-but not SHA-failed to upregulate surface activation markers, like human leukocyte antigen class II (HLA-DR), after stressful insults, indicating a state of deactivation during and immediately after dialysis. Additionally, RNA sequencing (RNA-seq) data and gene set enrichment analysis of pre-dialysis monocytes evidenced a great and complex difference between the groups given that, in the RCA group, monocytes displayed a dramatic transcriptional change with increased expression of genes related to the cell cycle regulation, cellular metabolism, and cytokine signaling, compatible with the reprogramming of the immune response. Transcriptomic changes in pre-dialysis monocytes signalize the lasting nature of the RCA-related effects, suggesting that monocytes are affected even beyond the dialysis session. Furthermore, these findings demonstrate that RCA-but not SHA-impairs the response of monocytes to activation stimuli and alters the immune status of these patients with potential clinical implications.


Asunto(s)
Anticoagulantes , Ácido Cítrico , Humanos , Ácido Cítrico/farmacología , Anticoagulantes/farmacología , Monocitos , Citratos , Heparina , Diálisis Renal/métodos , Inmunidad
8.
Kidney Int ; 103(5): 872-885, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36587794

RESUMEN

Mutations in OSGEP and four other genes that encode subunits of the KEOPS complex cause Galloway-Mowat syndrome, a severe, inherited kidney-neurological disease. The complex catalyzes an essential posttranscriptional modification of tRNA and its loss of function induces endoplasmic reticulum (ER) stress. Here, using Drosophila melanogaster garland nephrocytes and cultured human podocytes, we aimed to elucidate the molecular pathogenic mechanisms of KEOPS-related glomerular disease and to test pharmacological inhibition of ER stress-related signaling as a therapeutic principle. We found that ATF4, an ER stress-mediating transcription factor, or its fly orthologue Crc, were upregulated in both fly nephrocytes and human podocytes. Knockdown of Tcs3, a fly orthologue of OSGEP, caused slit diaphragm defects, recapitulating the human kidney phenotype. OSGEP cDNA with mutations found in patients lacked the capacity for rescue. Genetic interaction studies in Tcs3-deficient nephrocytes revealed that Crc mediates not only cell injury, but surprisingly also slit diaphragm defects, and that genetic or pharmacological inhibition of Crc activation attenuates both phenotypes. These findings are conserved in human podocytes where ATF4 inhibition improved the viability of podocytes with OSGEP knockdown, with chemically induced ER stress, and where ATF4 target genes and pro-apoptotic gene clusters are upregulated upon OSGEP knockdown. Thus, our data identify ATF4-mediated signaling as a molecular link among ER stress, slit diaphragm defects, and podocyte injury, and our data suggest that modulation of ATF4 signaling may be a potential therapeutic target for certain podocyte diseases.


Asunto(s)
Enfermedades Renales , Podocitos , Animales , Humanos , Podocitos/patología , Factores de Transcripción/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Enfermedades Renales/genética , Enfermedades Renales/patología , Estrés del Retículo Endoplásmico/genética , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo
9.
J Neuroinflammation ; 20(1): 46, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823602

RESUMEN

OBJECTIVE: Neurological manifestations of autoimmune connective tissue diseases (CTD) are poorly understood and difficult to diagnose. We here aimed to address this shortcoming by studying immune cell compositions in CTD patients with and without neurological manifestation. METHODS: Using flow cytometry, we retrospectively investigated paired cerebrospinal fluid (CSF) and blood samples of 28 CTD patients without neurological manifestation, 38 CTD patients with neurological manifestation (N-CTD), 38 non-inflammatory controls, and 38 multiple sclerosis (MS) patients, a paradigmatic primary neuroinflammatory disease. RESULTS: We detected an expansion of plasma cells in the blood of both N-CTD and CTD compared to non-inflammatory controls and MS. Blood plasma cells alone distinguished the clinically similar entities N-CTD and MS with high discriminatory performance (AUC: 0.81). Classical blood monocytes indicated higher disease activity in systemic lupus erythematosus (SLE) patients. Surprisingly, immune cells in the CSF did not differ significantly between N-CTD and CTD, while CD4+ T cells and the CD4+/CD8+ ratio were elevated in the blood of N-CTD compared to CTD. Several B cell-associated parameters partially overlapped in the CSF in MS and N-CTD. We built a machine learning model that distinguished N-CTD from MS with high discriminatory power using either blood or CSF. CONCLUSION: We here find that blood flow cytometry alone surprisingly suffices to distinguish CTD with neurological manifestations from clinically similar entities, suggesting that a rapid blood test could support clinicians in the differential diagnosis of N-CTD.


Asunto(s)
Enfermedades del Tejido Conjuntivo , Lupus Eritematoso Sistémico , Esclerosis Múltiple , Humanos , Citometría de Flujo , Diagnóstico Diferencial , Estudios Retrospectivos , Enfermedades del Tejido Conjuntivo/diagnóstico
10.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA