RESUMEN
Here, we report on the nanopatterning of different aromatic polymer substrates achieved by KrF excimer laser treatment. The conditions for the construction of the laser-induced periodic surface structures, the so-called LIPSS pattern, were established by optimized laser fluence and a number of pulses. The polymer substrates were polyethylene naphthalate (PEN), polyethersulfone (PES), and polystyrene (PS), which were chosen since they are thermally, chemically, and mechanically resistant polymers with high absorption coefficients at the excimer laser wavelength. The surface morphology of the treated substrates was investigated by atomic force microscopy and scanning electron microscopy, and the roughness and effective surface area on the modified samples were determined. Elemental concentration was characterized by energy-dispersive (EDX) analysis, surface chemistry was determined with X-ray photoelectron spectroscopy (XPS). The samples with the formation of LIPSS induced by 10 mJ·cm-2 with 1000, 3000, and 6000 pulses were used for subsequent in vitro cytocompatibility tests using human cells from osteosarcoma (U-2 OS). The LIPSS pattern and its ability of significant cell guidance were confirmed for some of the studied samples. Cell morphology, adhesion, and proliferation were evaluated. The results strongly contribute to the development of novel applications using nanopatterned polymers, e.g., in tissue engineering, cell analysis or in combination with metallization for sensor construction.
Asunto(s)
Nanoestructuras , Animales , Comunicación Celular , Humanos , Rayos Láser , Mamíferos , Nanoestructuras/química , Polímeros/química , Propiedades de SuperficieRESUMEN
Prostate cancer is a very common disease, which is, unfortunately, often the cause of many male deaths. This is underlined by the fact that the early stages of prostate cancer are often asymptomatic. Therefore, the disease is usually detected and diagnosed at late advanced or even metastasized stages, which are already difficult to treat. Hence, it is important to pursue research and development not only in terms of novel diagnostic methods but also of therapeutic ones, as well as to increase the effectiveness of the treatment by combinational medicinal approach. Therefore, in this review article, we focus on recent approaches and novel potential tools for the treatment of advanced prostate cancer; these include not only androgen deprivation therapy, antiandrogen therapy, photodynamic therapy, photothermal therapy, immunotherapy, multimodal therapy, but also poly(ADP-ribose) polymerase, Akt and cyclin-dependent kinase inhibitors.
Asunto(s)
Neoplasias de la Próstata/terapia , Animales , Antineoplásicos Hormonales/química , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Ensayos Clínicos como Asunto , Terapia Combinada , Humanos , Inmunoterapia , Masculino , Fototerapia , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/inmunologíaRESUMEN
Drug repositioning is a successful approach in medicinal research. It significantly simplifies the long-term process of clinical drug evaluation, since the drug being tested has already been approved for another condition. One example of drug repositioning involves cardiac glycosides (CGs), which have, for a long time, been used in heart medicine. Moreover, it has been known for decades that CGs also have great potential in cancer treatment and, thus, many clinical trials now evaluate their anticancer potential. Interestingly, heart failure and cancer are not the only conditions for which CGs could be effectively used. In recent years, the antiviral potential of CGs has been extensively studied, and with the ongoing SARS-CoV-2 pandemic, this interest in CGs has increased even more. Therefore, here, we present CGs as potent and promising antiviral compounds, which can interfere with almost any steps of the viral life cycle, except for the viral attachment to a host cell. In this review article, we summarize the reported data on this hot topic and discuss the mechanisms of antiviral action of CGs, with reference to the particular viral life cycle phase they interfere with.
Asunto(s)
Antivirales/uso terapéutico , Glicósidos Cardíacos/uso terapéutico , Antivirales/farmacología , COVID-19 , Glicósidos Cardíacos/metabolismo , Digitoxina , Digoxina , Reposicionamiento de Medicamentos/métodos , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/virología , Humanos , Neoplasias/tratamiento farmacológico , Ouabaína , Pandemias , SARS-CoV-2 , ATPasa Intercambiadora de Sodio-Potasio , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacosRESUMEN
Purpurin 18 derivatives with a polyethylene glycol (PEG) linker were synthesized as novel photosensitizers (PSs) with the goal of using them in photodynamic therapy (PDT) for cancer. These compounds, derived from a second-generation PS, exhibit absorption at long wavelengths; considerable singlet oxygen generation and, in contrast to purpurin 18, have higher hydrophilicity due to decreased logP. Together, these properties make them potentially ideal PSs. To verify this, we screened the developed compounds for cell uptake, intracellular localization, antitumor activity and induced cell death type. All of the tested compounds were taken up into cancer cells of various origin and localized in organelles known to be important PDT targets, specifically, mitochondria and the endoplasmic reticulum. The incorporation of a zinc ion and PEGylation significantly enhanced the photosensitizing efficacy, decreasing IC50 (half maximal inhibitory compound concentration) in HeLa cells by up to 170 times compared with the parental purpurin 18. At effective PDT concentrations, the predominant type of induced cell death was apoptosis. Overall, our results show that the PEGylated derivatives presented have significant potential as novel PSs with substantially augmented phototoxicity for application in the PDT of cervical, prostate, pancreatic and breast cancer.
Asunto(s)
Fotoquimioterapia/métodos , Porfirinas/química , Oxígeno Singlete/química , Línea Celular Tumoral , Citometría de Flujo , Humanos , Microscopía Fluorescente , SolubilidadRESUMEN
Improving the anticancer efficacy of chemotherapeutic drugs and photosensitizers requires innovative multifunctional nanoplatforms. This study introduces a chemo- and phototherapeutic drug delivery system (DDS) based on poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs), both PEGylated and non-PEGylated, with a mean size of 200 ± 75 nm. Colchicine (Colch) and purpurin18 (P18) were co-encapsulated into these NPs, and their in vitro drug release profiles were investigated. The anticancer potential of these systems was evaluated across various cell lines (i.e., CaCo-2, PC-3, MCF-7, and MRC-5 cells), demonstrating enhanced NP uptake by cancer cells compared to free drugs. Co-administration of Colch and P18 in 2D and 3D cell line models exhibited a synergistic effect, harnessing both chemotherapeutic and photodynamic effects, leading to higher cancer cell elimination efficacy. This newly developed multifunctional DDS presents a promising platform for combined chemo- and photodynamic therapy in cancer treatment.
Asunto(s)
Colchicina , Portadores de Fármacos , Liberación de Fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Humanos , Colchicina/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Portadores de Fármacos/química , Línea Celular Tumoral , Esferoides Celulares/efectos de los fármacos , Nanopartículas/administración & dosificación , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Neoplasias/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodosRESUMEN
Paclitaxel, a compound naturally occurring in yew, is a commonly used drug for the treatment of different types of cancer. Unfortunately, frequent cancer cell resistance significantly decreases its anticancer effectivity. The main reason for the resistance development is the paclitaxel-induced phenomenon of cytoprotective autophagy occurring by different mechanisms of action in dependence on a cell type and possibly even leading to metastases. Paclitaxel also induces autophagy in cancer stem cells, which greatly contributes to tumor resistance development. Paclitaxel anticancer effectivity can be predicted by the presence of several autophagy-related molecular markers, such as tumor necrosis factor superfamily member 13 in triple-negative breast cancer or cystine/glutamate transporter encoded by the SLC7A11 gene in ovarian cancer. Nevertheless, the undesired effects of paclitaxel-induced autophagy can be eliminated by paclitaxel co-administration with autophagy inhibitors, such as chloroquine. Interestingly, in certain cases, it is worthy of potentiating autophagy by paclitaxel combination with autophagy inducers, for instance, apatinib. A modern strategy in anticancer research is also to encapsulate chemotherapeutics into nanoparticle carriers or develop their novel derivatives with improved anticancer properties. Hence, in this review article, we summarize not only the current knowledge of paclitaxel-induced autophagy and its role in cancer resistance but mainly the possible drug combinations based on paclitaxel and their administration in nanoparticle-based formulations as well as paclitaxel analogs with autophagy-modulating properties.
Asunto(s)
Antineoplásicos Fitogénicos , Neoplasias Ováricas , Femenino , Humanos , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis , Autofagia , Línea Celular Tumoral , Resistencia a AntineoplásicosRESUMEN
Photodynamic therapy is an effective method for the treatment of several types of cancerous and noncancerous diseases. The key to the success of this treatment method is effective drug delivery to the site of action, for instance, a tumor. This ensures not only the high effectiveness of the therapy but also the suppression of side effects. But how to achieve effective targeted delivery? Lately, much attention has been paid to systems based on the so-called Trojan horse model, which is gaining increasing popularity. The principle of this model is that the effective drug is hidden in the internal structure of a nanoparticle, liposome, or nanoemulsion and is released only at the site of action. In this review article, we focus on drugs from the group of mitotic poisons, taxanes, and their use with photosensitizers in combined therapy. Here, we discuss the possibilities of how to improve the paclitaxel and docetaxel bioavailability, as well as their specific targeting for use in combined photo- and chemotherapy. Moreover, we also present the state of the art multifunctional drugs based on cabazitaxel which, owing to a suitable combination with photosensitizers, can be used besides photodynamic therapy and also in photoacoustic imaging or sonodynamic therapy.
Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/farmacología , Sistemas de Liberación de Medicamentos , Taxoides/farmacología , Taxoides/uso terapéutico , Paclitaxel/farmacologíaRESUMEN
The design of functional micro or nanostructured surfaces is undergoing extensive research for their intriguing multifunctional properties and for large variety of potential applications in biomedical field (tissue engineering or cell adhesion), electronics, optics or microfluidics. Such nanosized topographies can be easily fabricated by various lithography techniques and can be also further reinforced by synergic effect by combining aforementioned structures along materials with already outstanding antibacterial properties. In this work we fabricated novel micro/nanostructured substrates using soft lithography replication method and subsequent thermal nanoimprint lithography method, creating nanostructured films based on poly (l-lactic acid) (PLLA) fortified by thin silver films deposited by PVD. Main nanoscale patterns were fabricated by replicating surface patterns of optical discs (CDs and DVDs), which proved to be easy, fast and inexpensive method for creating relatively large area patterned surfaces. Their antimicrobial activity was examined in vitro against the bacteria Escherichia coli and Staphylococcus epidermidis strains. The results demonstrated that nanopatterned films actually improved the conditions for bacterial growth compared to pristine PLLA films, the novelty is based on formation of Ag nanoparticles on the surface/and in bulk, while silver nanoparticle enhanced and nanopatterned films exhibited excellent antibacterial activity against both bacterial strains, with circa 80 % efficacy in 4 h and complete bactericidal effect in span of 24 h.
RESUMEN
New psychoactive substances and among them synthetic cathinones represent a significant threat to human health globally. However, within such a large pool of substances derived from a natural compound ((S)-cathinone), substances with important pharmaceutical uses can be identified, as already documented by bupropione. Therefore, this work aimed to find a synthetic pathway for a novel synthetic cathinone, namely 4-isobutylmethcathinone, and describe its spectroscopic properties and biological activity in vitro. Since cathinones comprise a chiral center in their structure, a method for chiral separation of the substance was elaborated using high-performance liquid chromatography on an analytical and preparative scale. Preparative enantioseparation on a polysaccharide column provided a sufficient amount of the drug for the chiroptical studies leading to the determination of the absolute configuration of enantiomers as well as for their subsequent in vitro cytotoxicity study. The cytotoxicity induced by 4-isobutylmethcathinone was determined in human cells derived from the urinary bladder (5637), neuroblastoma (SH-SY5Y), microglia (HMC-3), and hepatocellular carcinoma (Hep G2), in which the IC50 values after 72 h reached an 18-65 µM concentration. This is significantly higher cytotoxicity in comparison with other synthetic cathinones. In the receptor binding studies, a significant difference in the agonistic effect on dopamine and adrenergic receptors of individual enantiomers was observed. The lack of binding affinity towards the serotonin receptors then relates 4-isobutylmethcathinone to the family of monoamine drugs, such as 3,4-methylenedioxymathamphetamine (ecstasy, MDMA).
RESUMEN
Nanofibers are an attractive option in drug release, especially as antibacterial materials. However, there is no universal antibacterial material and little attention has been devoted to bacteria-nanofiber attachment. Poly(N-isopropylacrylamide-co-acrylamide) is particularly interesting due to its dual thermo- and pH-responsive nature. Here, we prepared stimuli-responsive antibacterial nanofibers by the blend electrospinning of polycaprolactone (PCL), various concentrations of PNIPAm-co-AAm and ciprofloxacin (CIP). The lower critical solution temperature (LCST) of PNIPAm-co-AAm was determined by refractometry in distilled water and buffer solutions at pH 4 and 7.4. Based on the results obtained, we performed release tests, which indicated that the amount of released CIP and its release kinetics were dependent on nanofiber composition. Moreover, the nanofibers showed enhanced release at temperatures below LCST and, in turn, this led to enhanced antibacterial activity, as demonstrated by disk diffusion tests on Staphylococcus epidermidis and Escherichia coli. In addition, both bacterial strains demonstrated much lower attachment to CIP-loaded PCL/PNIPAm-co-AAm compared with CIP-loaded PCL nanofibers. Furthermore, cytocompatibility tests, performed using primary human dermal fibroblasts, produced similar good cell spreading regardless of PNIPAm-co-AAm concentration. Collectively, our results show that the proposed nanofibers have considerable potential as materials, which promote wound healing and significantly decrease the probability of bacterial infection.
Asunto(s)
Nanofibras , Acrilamida , Resinas Acrílicas , Antibacterianos/farmacología , Ciprofloxacina/farmacología , Escherichia coli , Humanos , Concentración de Iones de Hidrógeno , Nanofibras/química , PoliésteresRESUMEN
Here, we aimed at the preparation of an antibacterial surface on a flexible polydimethylsiloxane substrate. The polydimethylsiloxane surface was sputtered with silver, deposited with carbon, heat treated and exposed to excimer laser, and the combinations of these steps were studied. Our main aim was to find the combination of techniques applicable both against Gram-positive and Gram-negative bacteria. The surface morphology of the structures was determined by atomic force microscopy and scanning electron microscopy. Changes in surface chemistry were conducted by application of X-ray photoelectron spectroscopy and energy dispersive spectroscopy. The changes in surface wettability were characterized by surface free energy determination. The heat treatment was also applied to selected samples to study the influence of the process on layer stability and formation of PDMS-Ag or PDMS-C-Ag composite layer. Plasmon resonance effect was determined for as-sputtered and heat-treated Ag on polydimethylsiloxane. The heating of such structures may induce formation of a pattern with a surface plasmon resonance effect, which may also significantly affect the antibacterial activity. We have implemented sputtering of the carbon base layer in combination with excimer laser exposure of PDMS/C/Ag to modify its properties. We have confirmed that deposition of primary carbon layer on PDMS, followed by sputtering of silver combined with subsequent heat treatment and activation of such surface with excimer laser, led to the formation of a surface with strong antibacterial properties against two bacterial strains of S. epidermidis and E. coli.
RESUMEN
Taxanes, mainly paclitaxel and docetaxel, the microtubule stabilizers, have been well known for being the first-line therapy for breast cancer for more than the last thirty years. Moreover, they have been also used for the treatment of ovarian, hormone-refractory prostate, head and neck, and non-small cell lung carcinomas. Even though paclitaxel and docetaxel significantly enhance the overall survival rate of cancer patients, there are some limitations of their use, such as very poor water solubility and the occurrence of severe side effects. However, this is what pushes the research on these microtubule-stabilizing agents further and yields novel taxane derivatives with significantly improved properties. Therefore, this review article brings recent advances reported in taxane research mainly in the last two years. We focused especially on recent methods of taxane isolation, their mechanism of action, development of their novel derivatives, formulations, and improved tumor-targeted drug delivery. Since cancer cell chemoresistance can be an unsurpassable hurdle in taxane administration, a significant part of this review article has been also devoted to combination therapy of taxanes in cancer treatment. Last but not least, we summarize ongoing clinical trials on these compounds and bring a perspective of advancements in this field.
RESUMEN
Cardiac glycosides (CGs) are natural steroid compounds occurring both in plants and animals. They are known for long as cardiotonic agents commonly used for various cardiac diseases due to inhibition of Na+/K+-ATPase (NKA) pumping activity and modulating heart muscle contractility. However, recent studies show that the portfolio of diseases potentially treatable with CGs is much broader. Currently, CGs are mostly studied as anticancer agents. Their antiproliferative properties are based on the induction of multiple signaling pathways in an NKA signalosome complex. In addition, they are strongly connected to immunogenic cell death, a complex mechanism of induction of anticancer immune response. Moreover, CGs exert various immunomodulatory effects, the foremost of which are connected with suppressing the activity of T-helper cells or modulating transcription of many immune response genes by inhibiting nuclear factor kappa B. The resulting modulations of cytokine and chemokine levels and changes in immune cell ratios could be potentially useful in treating sundry autoimmune and inflammatory diseases. This review aims to summarize current knowledge in the field of immunomodulatory properties of CGs and emphasize the large area of potential clinical use of these compounds.
Asunto(s)
Antineoplásicos/farmacología , Glicósidos Cardíacos/farmacología , Factores Inmunológicos/farmacología , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Glicósidos Cardíacos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Factores Inmunológicos/uso terapéutico , Neoplasias/inmunología , Transducción de Señal/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismoRESUMEN
Drug repositioning is one of the leading strategies in modern therapeutic research. Instead of searching for completely novel substances and demanding studies of their biological effects, much attention has been paid to the evaluation of commonly used drugs, which could be utilized for more distinct indications than they have been approved for. Since treatment approaches for cancer, one of the most extensively studied diseases, have still been very limited, great effort has been made to find or repurpose novel anticancer therapeutics. One of these are cardiac glycosides, substances commonly used to treat congestive heart failure or various arrhythmias. Recently, the antitumor properties of cardiac glycosides have been discovered and, therefore, these compounds are being considered for anticancer therapy. Their mechanism of antitumor action seems to be rather complex and not fully uncovered yet, however, autophagy has been confirmed to play a key role in this process. In this review article, we report on the up-to-date knowledge of the anticancer activity of cardiac glycosides with special attention paid to autophagy induction, the molecular mechanisms of this process, and the potential employment of this phenomenon in clinical practice.
Asunto(s)
Autofagia , Glicósidos Cardíacos/farmacología , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Biomarcadores/metabolismo , Humanos , Modelos Biológicos , ATPasa Intercambiadora de Sodio-Potasio/metabolismoRESUMEN
Treatment of blood malignancies and other cancer diseases has been mostly unfeasible, so far. Therefore, novel treatment regimens should be developed and the currently used ones should be further elaborated. A stable component in various cancer treatment regimens consists of vincristine, an antimitotic compound of natural origin. Despite its strong anticancer activity, mostly, it cannot be administered as monotherapy due to its unspecific action and severe side effects. However, vincristine is suitable for combination therapy. Multidrug treatment regimens including vincristine are standardly applied in the therapy of non-Hodgkin lymphoma and other malignancies, in which it is combined with drugs of different mechanisms of action, mainly with DNA-interacting compounds (for example cyclophosphamide), or drugs interfering with DNA synthesis (for example methotrexate). Besides, co-administration of vincristine with monoclonal antibodies has also emerged, the typical example of which is the anti-CD20 antibody rituximab. Although in some combination anticancer therapies, vincristine has been replaced with other drugs exhibiting lesser side effects, though, in most cases, it is still irreplaceable. This is strongly evidenced by the number of active clinical trials evaluating vincristine in combination cancer therapy. Therefore, in this article, we have reviewed the most common cancer treatment regimens employing vincristine and bring an overview of current trends in the clinical development of this compound.
RESUMEN
Treatment of aggressive glioblastoma multiforme (GBM) must be based on very precise histological and molecular diagnostic of GBM type. According to the WHO guidelines, only tissue biopsy is a relevant source of cellular material evaluated in the diagnostic process to specify the tumor features. Nevertheless, obtaining a GBM biopsy is complicated and relies mostly on resection surgery. Evaluating circulating free DNA and/or circulating tumor cells (CTCs) in the clinic, using a liquid biopsy could represent a non-invasive cancer care optimization. In the present study, the peripheral blood of patients undergoing GBM resection (n = 18) was collected and examined for CTCs. The feasibility of GBM molecular diagnostics from a simple non-invasive peripheral blood withdrawal was evaluated. The size-based enriched CTCs were analyzed using cytomorphology and their origin confirmed based on mutational analysis. In addition, shared DNA mutations in CTCs and in primary tumor tissue were searched. For the identification of CTCs, next generation sequencing (NGS) was used. The GeneReader™ sequencing platform enables targeted sequencing of a 12-gene panel and direct evaluation of detected gene variations using QIAGEN Clinical Insight Analyze (QCI-A) software with a special algorithm for liquid biopsy sequencing analysis. Herein, we present a standard operating procedure for CTC enrichment in GBM patients, CTC in vitro culture, CTC cytomorphological evaluation, and NGS analysis of CTCs using the QIAGEN Actionable Insights Tumor (ATP) Panel. CTCs were present in all tested patients (18/18). The NGS data generated for formalin-fixed paraffin-embedded (FFPE) primary tumor tissues and CTCs reached significantly high-quality parameters. The comparisons between different sample types (CTCs vs. primary tumors) and sampling area (different primary tumor regions) showed a significant level of concordance, indicating CTC testing could be used for patient monitoring and recurrence awareness. Notably, more mutations were detected when analyzing CTC samples compared with the paired primary tumors (n = 3). The results confirm the feasibility of using CTCs as a source of tumor DNA in a diagnostic process, especially when evaluating the molecular characteristics of GBMs. A major advantage of the presented NGS approach for detecting CTCs is the simultaneous identification of several markers relevant for GBM diagnostics, allowing molecular diagnostics on cytological specimens and potential administration of innovative targeted therapies.
RESUMEN
Bacterial environmental colonization and subsequent biofilm formation on surfaces represents a significant and alarming problem in various fields, ranging from contamination of medical devices up to safe food packaging. Therefore, the development of surfaces resistant to bacterial colonization is a challenging and actively solved task. In this field, the current promising direction is the design and creation of nanostructured smart surfaces with on-demand activated amicrobial protection. Various surface activation methods have been described recently. In this review article, we focused on the "physical" activation of nanostructured surfaces. In the first part of the review, we briefly describe the basic principles and common approaches of external stimulus application and surface activation, including the temperature-, light-, electric- or magnetic-field-based surface triggering, as well as mechanically induced surface antimicrobial protection. In the latter part, the recent achievements in the field of smart antimicrobial surfaces with physical activation are discussed, with special attention on multiresponsive or multifunctional physically activated coatings. In particular, we mainly discussed the multistimuli surface triggering, which ensures a better degree of surface properties control, as well as simultaneous utilization of several strategies for surface protection, based on a principally different mechanism of antimicrobial action. We also mentioned several recent trends, including the development of the to-detect and to-kill hybrid approach, which ensures the surface activation in a right place at a right time.
RESUMEN
Photodynamic therapy has become a feasible direction for the treatment of both malignant and non-malignant diseases. It has been in the spotlight since FDA regulatory approval was granted to several photosensitizers worldwide. Nevertheless, there are still strong limitations in the targeting specificity that is vital to prevent systemic toxicity. Here, we report the synthesis and biological evaluation of a novel bimodal oxime conjugate composed of a photosensitizing drug, red-emitting pheophorbide a, and nandrolone (NT), a steroid specifically binding the androgen receptor (AR) commonly overexpressed in various tumors. We characterized the physico-chemical properties of the NT-pheophorbide a conjugate (NT-Pba) and singlet oxygen generation. Because light-triggered therapies have the potential to provide important advances in the treatment of hormone-sensitive cancer, the biological potential of this novel specifically-targeted photosensitizer was assessed in prostatic cancer cell lines in vitro using an AR-positive (LNCaP) and an AR-negative/positive cell line (PC-3). U-2 OS cells, both with and without stable AR expression, were used as a second cell line model. Interestingly, we found that the NT-Pba conjugate was not only photodynamically active and AR-specific, but also that its phototoxic effect was more pronounced compared to pristine pheophorbide a. We also examined the intracellular localization of NT-Pba. Live-cell fluorescence microscopy provided clear evidence that the NT-Pba conjugate localized in the endoplasmic reticulum and mitochondria. Moreover, we performed a competitive localization study with the excess of nonfluorescent NT, which was able to displace fluorescent NT-Pba from the cell interior, thereby further confirming the binding specificity. The oxime ether bond degradation was assayed in living cells by both real-time microscopy and a steroid receptor reporter assay using AR U-2 OS cells. Thus, NT-Pba is a promising candidate for both the selective targeting and eradication of AR-positive malignant cells by photodynamic therapy.
Asunto(s)
Antineoplásicos/farmacología , Clorofila/análogos & derivados , Oximas/farmacología , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Testosterona/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Clorofila/química , Clorofila/farmacología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Microscopía Fluorescente , Estructura Molecular , Imagen Óptica , Oximas/química , Tamaño de la Partícula , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Relación Estructura-Actividad , Propiedades de Superficie , Testosterona/análogos & derivados , Testosterona/químicaRESUMEN
Here, we report synthesis and biological evaluation of fluorescent nandrolone-3-carboxymethyloxime derivatives conjugated with green-emitting bodipy dye via PEG linkers. All the newly-synthesized compounds were evaluated for their effect on cell proliferation in vitro in MCF-7, LNCaP, PC-3 and HEK 293T model cell lines using WST-1 assay. By means of live-cell fluorescence microscopy, the intracellular localization of nandrolone-bodipy conjugates was revealed in endoplasmic reticulum. Moreover, we performed competitive localization study with nonfluorescent nandrolone, metandrolone, boldenone, trenbolone, and testosterone.